A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Probing the mechanical architecture of the vertebrate meiotic spindle. | LitMetric

Probing the mechanical architecture of the vertebrate meiotic spindle.

Nat Methods

Department of Physics, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan.

Published: February 2009

Accurate chromosome segregation during meiosis depends on the assembly of a microtubule-based spindle of proper shape and size. Current models for spindle-size control focus on reaction diffusion-based chemical regulation and balance in activities of motor proteins. Although several molecular perturbations have been used to test these models, controlled mechanical perturbations have not been possible. Here we report a piezoresistive dual cantilever-based system to test models for spindle-size control and examine the mechanical features, such as deformability and stiffness, of the vertebrate meiotic spindle. We found that meiotic spindles prepared in Xenopus laevis egg extracts were viscoelastic and recovered their original shape in response to small compression. Larger compression resulted in plastic deformation, but the spindle adapted to this change, establishing a stable mechanical architecture at different sizes. The technique we describe here may also be useful for examining the micromechanics of other cellular organelles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2766809PMC
http://dx.doi.org/10.1038/nmeth.1297DOI Listing

Publication Analysis

Top Keywords

mechanical architecture
8
vertebrate meiotic
8
meiotic spindle
8
models spindle-size
8
spindle-size control
8
test models
8
probing mechanical
4
architecture vertebrate
4
spindle
4
spindle accurate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!