Background And Purpose: The objectives of the present study were to: (1) noninvasively identify white matter reorganization and monitor its progress within 6 weeks after the onset of stroke; and (2) quantitatively investigate the effect of recombinant human erythropoietin treatment on this structural change using in vivo measurement of diffusion anisotropy.

Methods: Male Wistar rats were subjected to middle cerebral artery occlusion and treated with recombinant human erythropoietin intraperitoneally at a dose of 5000 U/kg of body weight (n=11) or the same volume of saline (n=7) daily for 7 days starting 24 hours after middle cerebral artery occlusion. MRI measurements of T2- and diffusion-weighted images and cerebral blood flow were performed and neurological severity score was assessed at 1 day and weekly for 6 weeks after middle cerebral artery occlusion. Luxol fast blue and Bielschowsky staining were used to demonstrate myelin and axons, respectively.

Results: White matter reorganization occurred along the ischemic lesion boundary after stroke. The region of white matter reorganization seen on the tissue slice coincided with the elevated area on the fractional anisotropy map, which can be accurately identified. The increase in elevated fractional anisotropy pixels corresponded with progress of white matter reorganization and was associated with improvement of neurological function. Treatment with recombinant human erythropoietin after stroke significantly enhanced white matter reorganization, restored local cerebral blood flow, and expedited functional recovery.

Conclusions: White matter reorganization can be detected by fractional anisotropy. Elevated fractional anisotropy pixels may be a good MRI index to stage white matter remodeling and predict functional outcome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2730918PMC
http://dx.doi.org/10.1161/STROKEAHA.108.527713DOI Listing

Publication Analysis

Top Keywords

white matter
32
matter reorganization
28
fractional anisotropy
16
recombinant human
12
human erythropoietin
12
middle cerebral
12
cerebral artery
12
artery occlusion
12
white
8
matter
8

Similar Publications

Decoding Brain Development and Aging: Pioneering Insights From MRI Techniques.

Invest Radiol

October 2024

From the Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan (A.H., S.K., J.K., M.N., W.U., S.F., T.A., A.W., K.K., S.A.); Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (A.H., M.N., S.F.); Polytechnique Montréal, Montreal, Quebec, Canada (S.N.); Montreal Heart Institute, University of Montreal, Montreal, Quebec, Canada (S.N.); and Center for Advanced Interdisciplinary Research, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia (S.N.).

The aging process induces a variety of changes in the brain detectable by magnetic resonance imaging (MRI). These changes include alterations in brain volume, fluid-attenuated inversion recovery (FLAIR) white matter hyperintense lesions, and variations in tissue properties such as relaxivity, myelin, iron content, neurite density, and other microstructures. Each MRI technique offers unique insights into the structural and compositional changes occurring in the brain due to normal aging or neurodegenerative diseases.

View Article and Find Full Text PDF

Objective: To investigate the frequency of epileptiform discharges associated with self-limited focal epilepsy (EDSelFEC) in children who have undergone a hemispherotomy and to evaluate whether patients with coexistence of EDSelFEC and structural hemispheric epilepsies differ from patients without coexistence of EDSelFEC and whether there are differences between the two groups with regard to preoperative management and postoperative outcome.

Methods: Data on 131 children who underwent a hemispherotomy between January 1999 and January 2015 were retrieved from the Epilepsy center's epilepsy surgery database. Children with EDSelFEC were compared with children without EDSelFEC with respect to epileptogenic hemispheric pathology, family history, age at epilepsy onset, timing of surgery, lesion laterality, preoperative cognitive function, response to sodium channel blocker antiepileptic medication, and surgical outcome.

View Article and Find Full Text PDF

Worldwide, thousands of male patients who carry ATP Binding Cassette Subfamily D Member 1 () mutations develop adrenomyeloneuropathy (AMN) in mid-adulthood, a debilitating axonopathy of the spinal cord. Today AAV gene therapy brings the most hope for this orphan disease. We previously reported that an AAV9-MAG- vector injected intravenously in the neonatal period prevented the disease in 2-year-old mice, the AMN mouse model.

View Article and Find Full Text PDF

White matter hyperintensities (WMH) of presumed vascular origin are a magnetic resonance imaging (MRI)-based biomarker of cerebral small vessel disease (CSVD). WMH are associated with cognitive decline and increased risk of stroke and dementia, and are commonly observed in aging, vascular cognitive impairment, and neurodegenerative diseases. The reliable and rapid measurement of WMH in large-scale multisite clinical studies with heterogeneous patient populations remains challenging, where the diversity of imaging characteristics across studies adds additional complexity to this task.

View Article and Find Full Text PDF
Article Synopsis
  • Motor symptom laterality in Parkinson's Disease (PD) impacts both motor and nonmotor symptoms, potentially altering patient prognosis, with compensatory mechanisms in the brain's dominant hemisphere playing a key role.
  • This study investigated the microstructural changes in the corpus callosum (CC), the brain's main connector between hemispheres, in 201 right-handed PD patients (split between left- and right-onset) compared to 100 healthy controls using advanced imaging techniques.
  • Findings revealed reduced free water and fractional anisotropy, along with increased mean diffusivity in the CC of patients with left-side PD onset, highlighting the relationship between brain structure and disease symptoms.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!