TRAIL agonists on clinical trials for cancer therapy: the promises and the challenges.

Rev Recent Clin Trials

Department of Pathology & Laboratory Medicine, 1365-C Clifton Road, Atlanta, GA, USA.

Published: January 2009

Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) is normally expressed in the human immune system and plays a critical role in antitumor immunity. TRAIL interacts with the death receptors, DR4 and DR5, and activates intracellular apoptotic pathway in cancer cells. This discovery has resulted in a rapid development of cancer therapeutic agents that can activate this apoptotic pathway. These therapeutic agents include recombinant human TRAIL (rhTRAIL) and its agonistic monoclonal antibody (MAb) against DR4 and DR5. Phase I trials have established the safety and tolerability of these TRAIL agonists in patients. Phase II trials are currently evaluating the therapeutic efficacy of TRAIL agonists as single agents or in combination with established cancer therapeutics. This review outlines the advances and the challenges in the development of these TRAIL agonists as effective clinical cancer therapeutics.

Download full-text PDF

Source
http://dx.doi.org/10.2174/157488709787047530DOI Listing

Publication Analysis

Top Keywords

trail agonists
16
dr4 dr5
8
apoptotic pathway
8
therapeutic agents
8
phase trials
8
cancer therapeutics
8
trail
7
cancer
5
agonists clinical
4
clinical trials
4

Similar Publications

TRAIL agonists rescue mice from radiation-induced lung, skin or esophageal injury.

J Clin Invest

January 2025

Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown University, Providence, United States of America.

Radiotherapy can be limited by pneumonitis which is impacted by innate immunity, including pathways regulated by TRAIL death receptor DR5. We investigated whether DR5 agonists could rescue mice from toxic effects of radiation and found two different agonists, parenteral PEGylated trimeric-TRAIL (TLY012) and oral TRAIL-Inducing Compound (TIC10/ONC201) could reduce pneumonitis, alveolar-wall thickness, and oxygen desaturation. Lung protection extended to late effects of radiation including less fibrosis at 22-weeks in TLY012-rescued survivors versus un-rescued surviving irradiated-mice.

View Article and Find Full Text PDF

Background: TNF-related apoptosis-inducing ligand (TRAIL) belongs to the tumor necrosis factor superfamily. TRAIL selectively induces apoptosis in tumor cells while sparing normal cells, which makes it an attractive candidate for cancer therapy. Recombinant soluble TRAIL and agonistic antibodies against TRAIL receptors have demonstrated safety and tolerability in clinical trials.

View Article and Find Full Text PDF

γδ T cells in hematological malignancies: mechanisms and therapeutic strategies.

Blood Sci

January 2025

Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China. Hefei, Anhui 230001, China.

Article Synopsis
  • γδ T cells are a unique type of immune cells with both innate and adaptive characteristics, crucial for targeting and eliminating hematological cancers using various mechanisms and enhancing other immune responses.
  • They show strong antiviral capabilities after hematopoietic stem cell transplantation (HSCT), potentially improving patient outcomes.
  • Despite facing challenges like low prevalence in blood and varied subtypes, there are exciting strategies being explored for γδ T cell-based therapies, including clinical trials that assess their safety and effectiveness in treating blood cancers.
View Article and Find Full Text PDF

MOTS-c relieves hepatocellular carcinoma resistance to TRAIL-induced apoptosis under hypoxic conditions by activating MEF2A.

Exp Cell Res

January 2025

Hypoxia and Health Medicine Research Center, Jilin Medical University, Jilin 132013, Jilin Province, PR China. Electronic address:

Background: Mitochondrial ORF of the 12S rRNA type-c (MOTS-c) as an AMPK agonist can regulate the expression of adaptive nuclear genes to promote cell homeostasis. However, the investigation of MOTS-c in hepatocellular carcinoma (HCC) is insufficient. This study aims to reveal the role of MOTS-c on HCC cell apoptosis.

View Article and Find Full Text PDF
Article Synopsis
  • Glutamine is crucial for tumor growth, and its deprivation in solid tumors can hinder their growth and spread, particularly in human glioblastoma cell lines U87MG and T98G.
  • Research indicates that U87MG cells, which have a more differentiated phenotype, show increased glycolysis and stemness marker expression (CD133) when deprived of glutamine, while T98G cells shift towards oxidative phosphorylation and become less responsive to certain drugs.
  • The study highlights that metabolic and phenotypic differences between these glioblastoma cell lines lead to varying drug sensitivities, suggesting that treatment strategies should consider these differences for better outcomes.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!