The blood pressure (BP) waveform varies substantially between the peripheral conduit (brachial) and the central elastic (aorta) arteries mainly do a gradual increase of systolic BP, as the wave propagates distally. This phenomenon is called BP amplification and is principally generated by the presence of arterial stiffness gradient and wave reflections along the arterial bed. More and more clinical studies suggest that central BP may provide additional information regarding cardiovascular risk beyond peripheral BP. Arterial properties and thus pressure amplification, are modulated by age, cardiovascular risk factors, vasoactive substances and drugs. Recent evidence suggests, beyond any doubt, that antihypertensive drugs affect peripheral and central BP differentially and alter pressure amplification. In the present review (Part I) we deal with the mechanisms underlying: (i) the genesis and recording of BP difference between central and peripheral arteries (pressure amplification), (ii) the rational of differential effect of antihypertensive drugs on pressure amplification, (iii) the pathophysiological role of pressure amplification on cardiovascular disease as well as its clinical and research implications.

Download full-text PDF

Source
http://dx.doi.org/10.2174/138161209787354267DOI Listing

Publication Analysis

Top Keywords

pressure amplification
24
antihypertensive drugs
12
blood pressure
12
pressure
9
cardiovascular risk
8
amplification
7
central
5
peripheral
5
drugs central
4
central blood
4

Similar Publications

Introduction: This study aimed to compare changes in retinal oxygen saturation 1 month after femtosecond-assisted laser in situ keratomileusis (FS-LASIK) in Chinese adults with myopia using retinal oximetry.

Methods: In this prospective, observational, single-center cohort study, Chinese adults aged 18-45 years with myopia were categorized into four groups according to spherical equivalent (SE), with 66 eyes characterized as low myopia (LM -3.00D < SE ≤ -0.

View Article and Find Full Text PDF

Newly identified SpoVAF/FigP complex: the role in spore germination at moderate high pressure and influencing factors.

Appl Environ Microbiol

January 2025

College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, China.

Unlabelled: The SpoVAF/FigP complex, a newly identified dormant spore ion channel, has been shown to amplify the response of germinant receptors (GRs) to nutrient germinants. However, its contribution to high-pressure-induced germination remains unexplored. In this study, we discovered that the 5AF/FigP complex played an important role in the GR-dependent germination of spores under moderate high pressure (MHP) by facilitating the release of ions, such as potassium (K), a mechanism in parallel with its role in nutrient-induced germination.

View Article and Find Full Text PDF

Digital recombinase polymerase amplification chip based on asymmetric contact angle composite interface.

Anal Chim Acta

February 2025

Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China. Electronic address:

Background: Digital recombinase polymerase amplification (dRPA) is an effective tool for the absolute quantification of nucleic acids and the detection of rare mutations. Due to the high viscosity or other physical properties of the reagent, this can compromise the accuracy and reproducibility of detection results, which limits the broader adoption and practical application of this technology. In this study, we developed an asymmetric contact angle digital isothermal detection (ACA-DID) chip and optimized the ACA-DID chip structure to achieve rapid digital recombinase polymerase amplification.

View Article and Find Full Text PDF

Autosomal Dominant Polycystic Kidney Disease (ADPKD) is the most frequent genetic renal disease with a complex physiopathology. More and more studies sustain that inflammation plays a crucial role in ADPKD pathogenesis and progression. We evaluated IL-12 involvement in ADPKD pathophysiology by assessing the serum levels of its monomers and heterodimers.

View Article and Find Full Text PDF

Background: As the global population ages, there is increasing pressure on health systems to provide high-quality and cost-effective care for this growing segment of the population. Reablement, primarily a strategic home-based rehabilitation approach, has been demonstrated to be a cost-effective, multidisciplinary, holistic, and person-centred approach to maintaining functional independence as one ages. Given that care delivery in the home setting for older persons is complex, a key feature of effective implementation of reablement is the integration of a multidisciplinary team.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!