Aims/hypothesis: Islet amyloid in type 2 diabetes contributes to loss of beta cell mass and function. Since islets are susceptible to oxidative stress-induced toxicity, we sought to determine whether islet amyloid formation is associated with induction of oxidative stress.
Methods: Human islet amyloid polypeptide transgenic and non-transgenic mouse islets were cultured for 48 or 144 h with or without the antioxidant N-acetyl-L: -cysteine (NAC) or the amyloid inhibitor Congo Red. Amyloid deposition, reactive oxygen species (ROS) production, beta cell apoptosis, and insulin secretion, content and mRNA were measured.
Results: After 48 h, amyloid deposition was associated with increased ROS levels and increased beta cell apoptosis, but no change in insulin secretion, content or mRNA levels. Antioxidant treatment prevented the rise in ROS, but did not prevent amyloid formation or beta cell apoptosis. In contrast, inhibition of amyloid formation prevented the induction of oxidative stress and beta cell apoptosis. After 144 h, amyloid deposition was further increased and was associated with increased ROS levels, increased beta cell apoptosis and decreased insulin content. At this time-point, antioxidant treatment and inhibition of amyloid formation were effective in reducing ROS levels, amyloid formation and beta cell apoptosis. Inhibition of amyloid formation also increased insulin content.
Conclusions/interpretation: Islet amyloid formation induces oxidative stress, which in the short term does not mediate beta cell apoptosis, but in the longer term may feed back to further exacerbate amyloid formation and contribute to beta cell apoptosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2719780 | PMC |
http://dx.doi.org/10.1007/s00125-008-1255-x | DOI Listing |
Ann Biomed Eng
January 2025
Department of Biomedical Engineering, Yildiz Technical University, Esenler, 34220, Istanbul, Türkiye.
Titanium (Ti)-based materials are favored for hard tissue applications, yet their bioinertness limits their success. This study hypothesizes that functionalizing Ti materials with chitosan nano/microspheres and calcitriol (VD) will enhance their bioactivity by improving cellular activities and mineralization. To test this, chitosan particles were applied uniformly onto Ti surfaces using electrophoretic deposition (EPD) at 20 V for 3 minutes.
View Article and Find Full Text PDFIn Vitro Cell Dev Biol Anim
January 2025
Department of Outpatient Service, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, China.
The objective of this study is to explore how adipose-derived stem cells (ASCs) regulate mitochondrial structure and function and the impact of this regulation on slowing cellular senescence. HFF-1 cells were induced by HO to establish a cellular senescence model, and ASCs or Mdivi-1 (mitochondrial fission inhibitor) was added. MTT examined the cell proliferation; flow cytometry detected mitochondrial membrane potential as well as apoptosis and cell cycle; kit measured ATP production; ELISA analyzed the levels of interleukin-6 (IL-6), interleukin 1 beta (IL-1β), tumor necrosis factor alpha-like (TNF-α), glutathione (GSH), malondialdehyde (MDA), and superoxide dismutase (SOD); Western blotting and qRT-PCR detected the expression of protein and mRNA levels; and β-galactosidase staining observed the degree of cellular senescence.
View Article and Find Full Text PDFCell Biochem Biophys
January 2025
Department of Zoology, MMV, Banaras Hindu University, Varanasi, 221005, UP, India.
Putranjiva roxburghii is an important medicinal plant utilized for remedy of female reproductive ailments. Its seed extract is being used as a uterine health booster due to the presence of several pharmaceutically important phytochemicals. However, the presence of phytochemicals in its leaf is still unexplored.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
Renal fibrosis is widely recognized as the ultimate outcome of many chronic kidney diseases. The process of epithelial-mesenchymal transition (EMT) plays a critical role in the progression of fibrosis following renal injury. UHRF1, as a critical epigenetic regulator, may play an essential role in the pathogenesis and progression of renal fibrosis and EMT.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, People's Republic of China.
Lysine acetyltransferase 2B (KAT2B) plays a crucial role in epigenetic regulation and tumor pathogenesis. Our study investigates KAT2B's function in epithelial ovarian cancer (EOC) using in vivo and in vitro methods. Immunohistochemistry showed the KAT2B expression in EOC tissues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!