Costameres were identified, for the first time, in skeletal and cardiac muscle, as regions associated with the sarcolemma, consisting of densely clustered patches of vinculin; they have many characteristics common to the cell-extracellular matrix-type of adherens junctions. Costameres are considered 'proteic machinery' and they appear to comprise two protein complexes, the dystrophin-glycoprotein complex (DGC) and the vinculin-talin-integrin system. In comparison to skeletal muscle, few studies have focused on cardiac muscle regarding these two complexes, and study is generally relative to dystrophin or to cardiac diseases, such as cardiomyopathies. However, insufficient data are available on these proteins in healthy human cardiomyocytes. For this reason, we performed an immunohistochemical study using human cardiac muscle fibers, in order to define the real distribution and the spatial relationship between the proteins in these two complexes. Our data showed a real costameric distribution of DGC and of the vinculin-talin-integrin system; all tested proteins were present in T-tubule and in intercalated disks. Moreover, our data demonstrated that all tested proteins of DGC colocalized with each other, as all tested components of the vinculin-talin-integrin system, and that all tested proteins of DGC colocalized with all tested proteins of the vinculin-talin-integrin system. Finally, all tested proteins of the two complexes were localized in the region of the sarcolemma over the I band, in 100% of our observations. The present study, for the first time, analyzed the majority of proteins of DGC and of the vinculin-talin-integrin system in cardiac muscle fibers, and it confirmed that DGC and the vinculin-talin-integrin system have a role in the transduction of mechanical force to the extracellular matrix. Finally it attributed a key role in the regulation of action potential duration to cardiac myocytes.
Download full-text PDF |
Source |
---|
Ann Cardiol Angeiol (Paris)
February 2012
Department of Biomorphology and Biotechnologies, School of Medicine, University of Messina, Messina, Italy.
Costameres encircle the myocyte perpendicular to its long axis, and comprise two protein complexes: the dystrophin-glycoprotein complex (DGC) and the vinculin-talin-integrin system. They participate in signaling functions and protect muscle cells from damage induced by workload. The behaviour of those proteins has been a focus of study starting from skeletal and smooth muscle cells to cardiomyocytes, and still represents a topical subject for cardiovascular translational research.
View Article and Find Full Text PDFInt J Mol Med
February 2009
Department of Biomorphology and Biotechnologies, University of Messina, Messina, Italy.
Costameres were identified, for the first time, in skeletal and cardiac muscle, as regions associated with the sarcolemma, consisting of densely clustered patches of vinculin; they have many characteristics common to the cell-extracellular matrix-type of adherens junctions. Costameres are considered 'proteic machinery' and they appear to comprise two protein complexes, the dystrophin-glycoprotein complex (DGC) and the vinculin-talin-integrin system. In comparison to skeletal muscle, few studies have focused on cardiac muscle regarding these two complexes, and study is generally relative to dystrophin or to cardiac diseases, such as cardiomyopathies.
View Article and Find Full Text PDFFolia Histochem Cytobiol
July 2010
Department of Biomorphology and Biotechnologies, University of Messina, Italy.
In the mature heart, the intercalated disc and costameres provide the cell-cell and cell-matrix junctions respectively. Intercalated disc is situated at the bipolar ends of the cardiomyocytes and the myofibrils are anchored at this structure. The costameres mediate integration with the extracellular matrix that covers individual cardiomyocytes laterally.
View Article and Find Full Text PDFJ Anat
September 2008
Department of Biomorphology and Biotechnologies, University of Messina, Messina, Italy.
Costameres are regions that are associated with the sarcolemma of skeletal muscle fibres and comprise proteins of the dystrophin-glycoprotein complex and vinculin-talin-integrin system. Costameres play both a mechanical and a signalling role, transmitting force from the contractile apparatus to the extracellular matrix in order to stabilize skeletal muscle fibres during contraction and relaxation. Recently, it was shown that bidirectional signalling occurs between sarcoglycans and integrins, with muscle agrin potentially interacting with both types of protein to enable signal transmission.
View Article and Find Full Text PDFJ Microsc
December 2007
Department of Biomorphology and Biotechnologies, University of Messina, Italy.
The dystrophin-glycoprotein complex and the vinculin-talin-integrin system constitute, together a protein machinery, called costameres. The dystrophin-glycoprotein complex contains, among other proteins, also dystrophin and the sarcoglycans subcomplex, proteins playing a key role in the pathogenesis of many muscular dystrophies and linking the cytoplasmic myofibrillar contractile elements to the signal transducing molecules of the extracellular matrix, also providing structural support to the sarcolemma. The vinculin-talin-integrin system connects some components of the extracellular matrix with intermediate filaments of desmin, forming transverse bridges between Z and M lines.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!