Time-resolved transmission spectroscopy of a mid-infrared quantum cascade laser emitting at 11.7 mum allows us to iteratively retrieve the effective refractive index and the extinction coefficient of the gain medium in a broad spectral range with an accuracy of +/-7x10(-3). Besides a 3% slowdown of the group velocity we find a large induced group-velocity dispersion with changing signs in the vicinity of the gain maximum, disclosing implications for self-pulse formation in quantum-cascade lasers. Additionally we measured the temperature in the active region by exploiting the thermo-optic effect. A linear behavior with respect to the current and the duty cycle was observed.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ol.34.000208DOI Listing

Publication Analysis

Top Keywords

intersubband gain-induced
4
gain-induced dispersion
4
dispersion time-resolved
4
time-resolved transmission
4
transmission spectroscopy
4
spectroscopy mid-infrared
4
mid-infrared quantum
4
quantum cascade
4
cascade laser
4
laser emitting
4

Similar Publications

Time-resolved transmission spectroscopy of a mid-infrared quantum cascade laser emitting at 11.7 mum allows us to iteratively retrieve the effective refractive index and the extinction coefficient of the gain medium in a broad spectral range with an accuracy of +/-7x10(-3). Besides a 3% slowdown of the group velocity we find a large induced group-velocity dispersion with changing signs in the vicinity of the gain maximum, disclosing implications for self-pulse formation in quantum-cascade lasers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!