Unsupervised activity perception in crowded and complicated scenes using hierarchical bayesian models.

IEEE Trans Pattern Anal Mach Intell

MIT, Cambridge, MA 02139, USA.

Published: March 2009

We propose a novel unsupervised learning framework to model activities and interactions in crowded and complicated scenes. Hierarchical Bayesian models are used to connect three elements in visual surveillance: low-level visual features, simple "atomic" activities, and interactions. Atomic activities are modeled as distributions over low-level visual features, and multi-agent interactions are modeled as distributions over atomic activities. These models are learnt in an unsupervised way. Given a long video sequence, moving pixels are clustered into different atomic activities and short video clips are clustered into different interactions. In this paper, we propose three hierarchical Bayesian models, Latent Dirichlet Allocation (LDA) mixture model, Hierarchical Dirichlet Process (HDP) mixture model, and Dual Hierarchical Dirichlet Processes (Dual-HDP) model. They advance existing language models, such as LDA [1] and HDP [2]. Our data sets are challenging video sequences from crowded traffic scenes and train station scenes with many kinds of activities co-occurring. Without tracking and human labeling effort, our framework completes many challenging visual surveillance tasks of board interest such as: (1) discovering typical atomic activities and interactions; (2) segmenting long video sequences into different interactions; (3) segmenting motions into different activities; (4) detecting abnormality; and (5) supporting high-level queries on activities and interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TPAMI.2008.87DOI Listing

Publication Analysis

Top Keywords

activities interactions
16
atomic activities
16
hierarchical bayesian
12
bayesian models
12
activities
9
crowded complicated
8
complicated scenes
8
scenes hierarchical
8
visual surveillance
8
low-level visual
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!