Purpose: To estimate the maximum-tolerated dose (MTD) of erlotinib administered during and after radiotherapy, and to describe the pharmacokinetics of erlotinib and its metabolite OSI-420 in patients between 3 and 25 years with newly diagnosed high-grade glioma who did not require enzyme-inducing anticonvulsants.

Experimental Design: Five dosage levels (70, 90, 120, 160, and 200 mg/m(2) per day) were planned in this phase I study. Dose-limiting toxicities (DLT) were evaluated during first 8 weeks of therapy. Local radiotherapy (dose between 54 and 59.4 Gy) and erlotinib started preferentially on the same day. Erlotinib was administered once daily for a maximum of 3 years. Pharmacokinetic studies were obtained after first dose and on day 8 of therapy. Mutational analysis of EGFR kinase domain, PIK3CA, and PTEN was done in tumor tissue.

Results: Median age at diagnosis of 23 patients was 10.7 years (range, 3.7-22.5 years). MTD of erlotinib was 120 mg/m(2) per day. Skin rash and diarrhea were generally well controlled with supportive care. Dose-limiting toxicities were diarrhea (n = 1), increase in serum lipase (n = 1), and rash with pruritus (n = 1). The pharmacokinetic variables of erlotinib and OSI-420 in children were similar to those described in adults. However, there was no relationship between erlotinib dosage and drug exposure. No EGFR kinase domain mutations were observed. Two patients with glioblastoma harbored mutations in PIK3CA (n = 1) or PTEN (n = 1).

Conclusions: Although the MTD of erlotinib in children with newly diagnosed high-grade glioma was 120 mg/m(2) per day, pharmacokinetic studies showed wide interpatient variability in drug exposure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2629527PMC
http://dx.doi.org/10.1158/1078-0432.CCR-08-1923DOI Listing

Publication Analysis

Top Keywords

pharmacokinetic studies
12
erlotinib administered
12
high-grade glioma
12
mtd erlotinib
12
mg/m2 day
12
erlotinib
9
newly diagnosed
8
diagnosed high-grade
8
dose-limiting toxicities
8
egfr kinase
8

Similar Publications

The therapeutic role of naringenin nanoparticles on hepatocellular carcinoma.

BMC Pharmacol Toxicol

January 2025

Biochemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.

Background: Naringenin, a flavonoid compound found in citrus fruits, possesses valuable anticancer properties. However, its potential application in cancer treatment is limited by poor bioavailability and pharmacokinetics at tumor sites. To address this, Naringenin nanoparticles (NARNPs) were prepared using the emulsion diffusion technique and their anticancer effects were investigated in HepG2 cells.

View Article and Find Full Text PDF

Tramadol-related fatalities: Metabolic ratios & SNPs/INDELs belonging to UGT1A8, UGT2B7, ABCC2, and SLC22A1.

Forensic Sci Int Genet

December 2024

CHU Lille, Unité Fonctionnelle de Toxicologie, Lille F-59000,  France; Universite de Lille, ULR 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé, Lille, France.

Genetic polymorphism can cause variation in tramadol (TR) pharmacokinetic characteristics and the expected clinical response. In forensic toxicology, the data about parent and metabolite concentrations (MRs; metabolic ratios) could facilitate to determine the cause of death and to assess time between drug intake and death. In this study, the aim was to investigate if UGT1A8, UGT2B7, ABCC2, and SLC22A1 genotyping can facilitate interpretation by investigating the frequency of UGT1A8, UGT2B7, ABCC2, and SLC22A1 genotypes in forensic autopsy cases positive for TR and to assess whether there is a correlation between these genetic variants and MRs.

View Article and Find Full Text PDF

Gastrointestinal absorption and its regulation of hawthorn leaves flavonoids.

Sci Rep

January 2025

School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, P.R. China.

Hawthorn leave flavonoids (HLF) are widely used as an herb or dietary supplements for cardio-cerebrovascular diseases. However, its gastrointestinal absorption behavior and mechanism have not been disclosed. In this study, gastrointestinal absorption and its regulation of 4''-O-glucosylvitexin (GLV), 2''-O-rhamnosylvitexin (RHV), vitexin (VIT), rutin (RUT) and hyperoside (HP) in HLF were investigated using in vitro, in situ and in vivo models.

View Article and Find Full Text PDF

Novel antimalarial 3-substituted quinolones isosteres with improved pharmacokinetic properties.

Eur J Med Chem

December 2024

School of Pharmacy and Food Engineering, Wuyi University, 529020, Jiangmen, China; Department of Chemistry, University of Liverpool, L69 7ZD, Liverpool, UK. Electronic address:

Aryl quinolone derivatives can target the cytochrome bc complex of Plasmodium falciparum, exhibiting excellent in vitro and in vivo antimalarial activity. However, their clinical development has been hindered due to their poor aqueous solubility profiles. In this study, a series of bioisosteres containing saturated heterocycles fused to a 4-pyridone ring were designed to replace the inherently poorly soluble quinolone core in antimalarial quinolones with the aim to reduce π-π stacking interactions in the crystal packing solid state, and a synthetic route was developed to prepare these alternative core derivatives.

View Article and Find Full Text PDF

Ovarian cancer is the leading cause of death among all gynecological malignancies, and drug resistance renders the current chemotherapy agents ineffective for patients with advanced metastatic tumors. We report an effective treatment strategy for targeting metastatic ovarian cancer involving a nanoformulation (Bola/IM)─bola-amphiphilic dendrimer (Bola)-encapsulated imatinib (IM)─to target the critical mediator of ovarian cancer stem cells (CSCs) CD117 (c-Kit). Bola/IM offered significantly more effective targeting of CSCs compared to IM alone, through a novel and tumor-specific β-catenin/HRP2 axis, allowing potent inhibition of cancer cell survival, stemness, and metastasis in metastatic and drug-resistant ovarian cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!