Mammary epithelial-specific ablation of the focal adhesion kinase suppresses mammary tumorigenesis by affecting mammary cancer stem/progenitor cells.

Cancer Res

Department of Internal Medicine, Division of Molecular Medicine and Genetics, Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, USA.

Published: January 2009

Focal adhesion kinase (FAK) has been implicated in the development of cancers, including those of the breast. Nevertheless, the molecular and cellular mechanisms by which FAK promotes mammary tumorigenesis in vivo are not well understood. Here, we show that targeted deletion of FAK in mouse mammary epithelium significantly suppresses mammary tumorigenesis in a well-characterized breast cancer model. Ablation of FAK leads to the depletion of a subset of bipotent cells in the tumor that express both luminal marker keratin 8/18 and basal marker keratin 5. Using mammary stem/progenitor markers, including aldehyde dehydrogenase, CD24, CD29, and CD61, we further revealed that ablation of FAK reduced the pool of cancer stem/progenitor cells in primary tumors of FAK-targeted mice and impaired their self-renewal and migration in vitro. Finally, through transplantation in NOD-SCID mice, we found that cancer stem/progenitor cells isolated from FAK-targeted mice have compromised tumorigenicity and impaired maintenance in vivo. Together, these results show a novel function of FAK in maintaining the mammary cancer stem/progenitor cell population and provide a novel mechanism by which FAK may promote breast cancer development and progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3039129PMC
http://dx.doi.org/10.1158/0008-5472.CAN-08-3078DOI Listing

Publication Analysis

Top Keywords

cancer stem/progenitor
16
mammary tumorigenesis
12
stem/progenitor cells
12
mammary
8
focal adhesion
8
adhesion kinase
8
suppresses mammary
8
mammary cancer
8
breast cancer
8
ablation fak
8

Similar Publications

Adrenocortical cancer (ACC) is a rare malignant neoplasm originating from the adrenal cortex, presenting limited therapeutic options. An avenue for improving therapeutic efficacy may involve a deeper understanding of the role of adrenocortical stem/progenitor cells in the pathogenesis of this disease. Although existing data suggest stem/progenitor characteristics in certain cell populations within ACC, the challenge remains to identify adrenocortical stem cell markers directly involved in its carcinogenesis.

View Article and Find Full Text PDF

Evi1 governs Kdm6b-mediated histone demethylation to regulate the Laptm4b-driven mTOR pathway in hematopoietic progenitor cells.

J Clin Invest

December 2024

Department of Medicine and Department of Biochemistry and Molecular Biology, UF Health Cancer Center, University of Florida, Gainesville, Florida, USA.

Ecotropic viral integration site 1 (EVI1/MECOM) is frequently upregulated in myeloid malignancies. Here, we present an Evi1-transgenic mouse model with inducible expression in hematopoietic stem/progenitor cells (HSPCs). Upon induction of Evi1 expression, mice displayed anemia, thrombocytopenia, lymphopenia, and erythroid and megakaryocyte dysplasia with a significant expansion of committed myeloid progenitor cells, resembling human myelodysplastic syndrome/myeloproliferative neoplasm-like (MDS/MPN-like) disease.

View Article and Find Full Text PDF

Circadian rhythm, regulated by a time keeping system termed as the circadian clock, is important for many biological processes in eukaryotes. Disordered circadian rhythm is implicated in different human diseases, including cardiovascular disease, neurologic disease, metabolic disorders, and cancer. The stem like-cancer cells (or cancer stem cells, CSCs) are proposed to stand at the top of the heterogeneous hierarchy in different solid tumors, which are responsible for tumor initiation, development, therapy resistance and metastasis.

View Article and Find Full Text PDF

BCL11A +58/+55 enhancer-editing facilitates HSPC engraftment and HbF induction in rhesus macaques conditioned with a CD45 antibody-drug conjugate.

Cell Stem Cell

December 2024

National Heart, Lung, and Blood Institute (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20814, USA. Electronic address:

Editing the +58 region of the BCL11A erythroid enhancer has shown promise in treating β-globin disorders. To address variations in fetal hemoglobin (HbF) response, we investigated editing both +58 and +55 enhancers. Rhesus macaques transplanted with edited hematopoietic stem/progenitor cells (HSPCs) following busulfan conditioning exhibited durable, high-level (∼90%) editing frequencies post transplantation with sustained HbF reactivation over 4 years, without hematological perturbations.

View Article and Find Full Text PDF
Article Synopsis
  • TIFAB (TRAF-interacting protein with forkhead-associated domain B) is an inhibitor of NF-kB signaling that plays significant roles in blood cell production and various blood cancers, including acute myeloid leukemia (AML).
  • The study finds that deleting TIFAB in AML negatively affects leukemia stem/progenitor cell function, glucose consumption, and mitochondrial activity, while gene analysis shows reduced activity in key pathways such as MYC and glycolysis.
  • HNF4A emerges as a crucial target of TIFAB, and restoring HNF4A levels can counteract the metabolic issues linked to TIFAB deficiency, emphasizing the importance of the TIFAB-HNF4A relationship in AML progression.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!