A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The estrogen-responsive B box protein (EBBP) restores retinoid sensitivity in retinoid-resistant cancer cells via effects on histone acetylation. | LitMetric

Retinoids have significant clinical activity in several human cancers, yet the factors determining retinoid sensitivity in cancer cells are still unclear. Retinoid-induced expression of retinoic acid receptor (RAR) beta(2) is a necessary component of the retinoid anticancer signal in cancer cells. We have previously identified the Estrogen-responsive B Box Protein (EBBP), a member of the Tripartite Motif (TRIM) protein family, as a novel RARbeta2 transcriptional regulator in the retinoid signal. Here we examined the mechanism of the EBBP effect on the retinoid anticancer signal. We assessed retinoid-responsive RARbeta2 transcription in retinoid-resistant breast and lung cancer cells in the presence of chromatin modifying agents. A histone deacetylase (HDAC) inhibitor alone, or in combination with retinoid, was more effective than a demethylating agent in restoring RARbeta2 transcription in resistant cells. Overexpression of EBBP alone markedly increased histone acetylation. The effect of EBBP on retinoid-responsive transcription appeared to be limited to genes with the retinoic acid response element (betaRARE) regulatory sequence, such as CYP26A1. EBBP inhibited cell growth by effects on cyclin D1 and Phospho-Rb, and, reduced cell viability in retinoid-resistant cancer cells. The viability of non-cancer cells was unaffected by EBBP overexpression. Taken together our data suggests that EBBP acts to de-repress transcription of RARbeta2 and CYP26A1, by modifying histone acetylation in retinoid-resistant cancer cells, and, is an important target for drug discovery in retinoid-resistant cancers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.canlet.2008.11.030DOI Listing

Publication Analysis

Top Keywords

cancer cells
24
retinoid-resistant cancer
12
histone acetylation
12
estrogen-responsive box
8
box protein
8
ebbp
8
protein ebbp
8
retinoid sensitivity
8
cells
8
retinoic acid
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!