Perchlorate detection at nanomolar concentrations by surface-enhanced Raman scattering.

Appl Spectrosc

Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.

Published: January 2009

Perchlorate (ClO4-) has emerged as a widespread environmental contaminant and has been detected in various food products and even in human breast milk and urine. This research developed a sensing technique based on surface-enhanced Raman scattering (SERS) for rapid screening and monitoring of this contaminant in groundwater and surface water. The technique was found to be capable of detecting ClO4- at concentrations as low as 10(-9) M (or approximately 0.1 microg/L) by using 2-dimethylaminoethanethiol (DMAE) modified gold nanoparticles as a SERS substrate. Quantitative analysis of ClO4- was validated with good reproducibility by using both simulated and contaminated groundwater samples. When coupled with a portable Raman spectrometer, this technique has the potential to be used as an in situ, rapid screening tool for perchlorate in the environment.

Download full-text PDF

Source
http://dx.doi.org/10.1366/000370209787169894DOI Listing

Publication Analysis

Top Keywords

surface-enhanced raman
8
raman scattering
8
rapid screening
8
perchlorate detection
4
detection nanomolar
4
nanomolar concentrations
4
concentrations surface-enhanced
4
scattering perchlorate
4
perchlorate clo4-
4
clo4- emerged
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!