Mangrove forest sediments produce significant amounts of methane, but the diversity of methanogenic archaea is not well known at present. Therefore, 16S rRNA gene libraries were made using archaea-specific primers and DNA extracted directly from Tanzanian mangrove sediment samples as a template. Analysis of sequence data showed phylotypes closely related to cultivated methylotrophic methanogenic archaea from the marine environment, or distantly related to acetoclastic and hydrogenotrophic methanogenic archaea. In an attempt to isolate relevant methanogenic archaea, we succeeded in obtaining a new mesophilic methylotrophic methanogenic archaeon (strain MM1) capable of utilizing methanol and methylated amines as the only substrates. Under optimum conditions, the cells of strain MM1 exhibited a high specific growth rate (mu) of 0.21+/-0.03 (i.e. doubling time of 3.2 h) on both methanol and trimethylamine. The 16S rRNA gene sequence of strain MM1 clustered with five environmental clones, indicating that MM1 is an important methanogenic methylotroph in mangrove sediments. Based on physiological and phylogenetic analyses, strain MM1 is proposed to be included in the species of Methanococcoides methylutens.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1574-6968.2008.01464.xDOI Listing

Publication Analysis

Top Keywords

methanogenic archaea
20
strain mm1
16
diversity methanogenic
8
mangrove sediment
8
16s rrna
8
rrna gene
8
methylotrophic methanogenic
8
methanogenic
6
archaea
5
strain
5

Similar Publications

Methane emissions from the riverine sandy wetlands on the Mongolia Plateau.

Environ Monit Assess

December 2024

State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China.

Methane (CH) processes and fluxes have been widely investigated in low-latitude tropical wetlands and high-latitude boreal peatlands. In the mid-latitude Mongolia Plateau, however, CH processes and fluxes have been less studied, particularly in riverine wetlands. In this study, in situ experiments were conducted in the riverine sandy wetlands of the Mongolia Plateau to gain a better understanding of CH emissions and their influencing mechanisms.

View Article and Find Full Text PDF

The Eger Rift subsurface is characterized by frequent seismic activity and consistently high CO concentrations, making it a unique deep biosphere ecosystem and a suitable site to study the interactions between volcanism, tectonics, and microbiological activity. Pulses of geogenic H during earthquakes may provide substrates for methanogenic and chemolithoautotrophic processes, but very little is currently known about the role of subsurface microorganisms and their cellular processes in this type of environment. To assess the impact of geologic activity on microbial life, we analyzed the geological, geochemical, and microbiological composition of rock and sediment samples from a 238 m deep drill core, running across six lithostratigraphic zones.

View Article and Find Full Text PDF

Diversity and Distribution of Methane Functional Microorganisms in Sedimentary Columns of Hongfeng Reservoir in Different Seasons.

Curr Microbiol

December 2024

Department of Environmental Science and Engineering, School of Environmental and Chemical Engineering, Shanghai University, 150#, 99 Shangda Road, Shanghai, 200444, China.

Freshwater ecosystem is a significant natural source of CH emission in the atmosphere. To fully understand the dynamics of methane emissions in reservoirs, it is essential to grasp the temporal and vertical distribution patterns, as well as the factors that influence the methanogenic bacterial communities within the sediments. This study investigates the methane dynamics, carbon isotope fractionation (δCH), and abundance of functional microorganisms along the geochemical gradient in the in situ sedimentary column of Hongfeng Reservoir (China).

View Article and Find Full Text PDF

Corrinoids are cobalt-containing tetrapyrroles. They include adenosylcobalamin (vitamin B) and cobamides that function as cofactors and coenzymes for methyl transfer, radical-dependent and redox reactions. Though cobamides are the most complex cofactors in nature, they are essential in the acetyl-CoA pathway, thought to be the most ancient CO-fixation pathway, where they perform a pterin-to-cobalt-to-nickel methyl transfer reaction catalyzed by the corrinoid iron-sulphur protein (CoFeS).

View Article and Find Full Text PDF

Increased methane production associated with community shifts towards Methanocella in paddy soils with the presence of nanoplastics.

Microbiome

December 2024

State Key Laboratory of Nutrient Use and Management, Key Laboratory of Plant-Soil Interactions, College of Resources and Environmental Sciences, Ministry of Education, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China.

Background: Planetary plastic pollution poses a major threat to ecosystems and human health in the Anthropocene, yet its impact on biogeochemical cycling remains poorly understood. Waterlogged rice paddies are globally important sources of CH. Given the widespread use of plastic mulching in soils, it is urgent to unravel whether low-density polyethylene (LDPE) will affect the methanogenic community in flooded paddy soils.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!