Alpha-synuclein (alphaSyn) is a small cytosolic protein of unknown function, which is highly enriched in the brain. It is genetically linked to Parkinson's disease (PD) in that missense mutations or multiplication of the gene encoding alphaSyn causes early onset familial PD. Furthermore, the neuropathological hallmarks of both sporadic and familial PD, Lewy bodies and Lewy neurites, contain insoluble aggregates of alphaSyn. Several studies have reported evidence that alphaSyn can inhibit phospholipase D (PLD), which hydrolyzes phosphatidylcholine to form phosphatidic acid and choline. Although various hypotheses exist regarding the roles of alphaSyn in health and disease, no other specific biochemical function for this protein has been reported to date. Because PLD inhibition could represent an important function of alphaSyn, we sought to extend existing reports on this interaction. Using purified proteins, we tested the ability of alphaSyn to inhibit PLD activity in cell-free assays. We also examined several cell lines and transfection conditions to assess whether alphaSyn inhibits endogenous or overexpressed PLD in cultured mammalian cells. In yeast, we extended our previous report of an interaction between alphaSyn and PLD-dependent phenotypes, for which PLD activity is absolutely necessary. Despite testing a range of experimental conditions, including those previously published, we observed no significant inhibition of PLD by alphaSyn in any of these systems. We propose that the previously reported effects of alphaSyn on PLD activity could be due to increased endoplasmic reticulum-related stress associated with alphaSyn overexpression in cells, but are not likely due to a specific and direct interaction between alphaSyn and PLD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2683767 | PMC |
http://dx.doi.org/10.1021/bi801871h | DOI Listing |
Neurobiol Dis
January 2025
Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America. Electronic address:
Aggregation of alpha-synuclein (αsyn) plays an integral role in Parkinson's disease (PD) and Dementia with Lewy bodies (DLB). 14-3-3θ is a highly expressed brain protein with chaperone-like activity that regulates αsyn folding. 14-3-3θ overexpression reduces αsyn aggregation, transmission between cells, and neuronal loss, while 14-3-3 inhibition promotes αsyn pathology.
View Article and Find Full Text PDFNeurology
February 2025
From the Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD.
Background And Objectives: Lewy body diseases (LBDs) such as Parkinson disease (PD) feature increased deposition of α-synuclein (α-syn) in cutaneous sympathetic noradrenergic nerves. The pathophysiologic significance of sympathetic intraneuronal α-syn is unclear. We reviewed data about immunoreactive α-syn, tyrosine hydroxylase (TH, a marker of catecholaminergic fibers), and the sympathetic neurotransmitter norepinephrine (NE) in skin biopsies from control participants and patients with PD, the related LBD pure autonomic failure (PAF), the non-LBD synucleinopathy multiple system atrophy (MSA), or neurologic postacute sequelae of severe acute respiratory syndrome coronavirus 2 (neuro-PASC).
View Article and Find Full Text PDFSoft Matter
January 2025
Physical Chemistry, Chemistry Centre, Lund University, SE-22100 Lund, Sweden.
We have investigated the adsorption of the amyloid-forming protein α-Synuclein (αSyn) onto small unilamellar vesicles composed of a mixture of zwitterionic POPC and anionic POPS lipids. αSyn monomers adsorb onto the anionic lipid vesicles where they adopt an α-helical secondary structure. The degree of adsorption depends on the fraction of anionic lipid in the mixed lipid membrane, but one needs to consider the electrostatic shift of the serine p with increasing fraction of POPS.
View Article and Find Full Text PDFLymphocyte activation gene 3 (LAG3) is a key receptor involved in the propagation of pathological proteins in Parkinson's disease (PD). This study investigates the role of neuronal LAG3 in mediating the binding, uptake, and propagation of α-synuclein (αSyn) preformed fibrils (PFFs). Using neuronal LAG3 conditional knockout mice and human induced pluripotent stem cells-derived dopaminergic (DA) neurons, we demonstrate that LAG3 expression is critical for pathogenic αSyn propagation.
View Article and Find Full Text PDFNeuroscience
January 2025
Departments of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China. Electronic address:
Although inflammation and oxidative stress have been increasingly recognised as components of Alzheimer's disease (AD) and Parkinson's disease (PD) pathologies. Few studies have investigated peripheral inflammation, and none have examined oxidative stress in Dementia with Lewy bodies (DLB). The purpose of our study was to characterize and compare those biomarkers in DLB with those in AD and amnestic mild cognitive impairment (aMCI).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!