A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Spatial biases and computational constraints on the encoding of complex local image structure. | LitMetric

Spatial biases and computational constraints on the encoding of complex local image structure.

J Vis

ARC Centre of Excellence in Vision Science and Centre for Visual Sciences, Research School of Biological Sciences, Australian National University, Canberra, Australia.

Published: July 2008

The decomposition of visual scenes into elements described by orientation and spatial frequency is well documented in the early cortical visual system. How such 2nd-order elements are sewn together to create perceptual objects such as corners and intersections remains relatively unexplored. The current study combines information theory with structured deterministic patterns to gain insight into how complex (higher-order) image features are encoded. To more fully probe these mechanisms, many subjects (N = 24) and stimuli were employed. The detection of complex image structure was studied under conditions of learning and attentive versus preattentive visual scrutiny. Strong correlations (R(2) > 0.8, P < 0.0001) were found between a particular family of spatially biased measures of image information and human sensitivity to a large range of visual structures. The results point to computational and spatial limitations of such encoding. Of the extremely large set of complex spatial interactions that are possible, the small subset perceivable by humans were found to be dominated by those occurring along sets of one or more narrow parallel lines. Within such spatial domains, the number of pieces of visual information (pixel values) that may be simultaneously considered is limited to a maximum of 10 points. Learning and processes involved in attentive scrutiny do little if anything to increase the dimensionality of this system.

Download full-text PDF

Source
http://dx.doi.org/10.1167/8.7.19DOI Listing

Publication Analysis

Top Keywords

image structure
8
spatial
5
visual
5
spatial biases
4
biases computational
4
computational constraints
4
constraints encoding
4
complex
4
encoding complex
4
complex local
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!