NEW AND IMPROVED INSULIN: 1H[19F] NOE NMR difference spectra for CF(3)-substituted aromatic carboxylates bound at the HisB10 sites of the R(6) human insulin (HI) hexamer show strong NOEs between the CF(3) groups and the LeuB6, AsnB3, and PheB1 sidechains. The NOEs and structural modeling establish that these carboxylates form closed complexes with the HisB10 site capped by the PheB1 rings.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbic.200800746DOI Listing

Publication Analysis

Top Keywords

1h[19f] noe
8
noe nmr
8
insulin hexamer
8
hisb10 site
8
nmr structural
4
structural signatures
4
signatures insulin
4
hexamer evidence
4
evidence capped
4
capped hisb10
4

Similar Publications

The emergence of very high NMR magnetic fields will certainly encourage the study of larger biological systems with their dynamics and interactions. NMR spin relaxation allows probing the dynamical properties of proteins where the N longitudinal () and transverse () relaxation rates in addition to the H-N heteronuclear NOE describe the ps-ns time scale. Their analytical representation involves the chemical shift anisotropy (CSA) effect that represents the major contribution at a very high magnetic field above 18.

View Article and Find Full Text PDF

Ameloblastin binding to biomimetic models of cell membranes - A continuum of intrinsic disorder.

Arch Oral Biol

January 2025

Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA; Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90033, USA. Electronic address:

Objective: A 37-residue amino acid sequence corresponding to the segment encoded by exon-5 of murine ameloblastin (Ambn), AB2 (Y67-Q103), has been implicated with membrane association, ameloblastin self-assembly, and amelogenin-binding. Our aim was to characterize, at the residue level, the structural behavior of AB2 bound to chemical mimics of biological membranes using NMR spectroscopy.

Design: To better define the structure of AB2 using NMR-based methods, recombinant C- and N-labelled AB2 (*AB2) was prepared and data collected free in solution and with deuterated dodecylphosphocholine (dPC) micelles, deuterated bicelles, and both small and large unilamellar vesicles.

View Article and Find Full Text PDF

The incidence of infection is on the rise; however, the existing drug treatment cycle is lengthy and often requires multi-drug combination. Therefore, there is a need to develop new and effective anti- drugs. Cochliomycin A, a 14-membered resorcylic acid lactone with an acetonide group at C-5' and C-6', exhibits a wide range of antimicrobial, antimalarial, and antifouling activities.

View Article and Find Full Text PDF

AtGRP2 is a glycine-rich, RNA-binding protein that plays pivotal roles in abiotic stress response and flowering time regulation in Arabidopsis thaliana. AtGRP2 consists of an N-terminal cold shock domain (CSD) and two C-terminal CCHC-type zinc knuckles interspersed with glycine-rich regions. Here, we investigated the structure, dynamics, and nucleic acid-binding properties of AtGRP2-CSD.

View Article and Find Full Text PDF

Glutathione (GSH) and its oxidized dimer (GSSG) play an important role in living systems as an antioxidant, balancing the presence of reactive oxygen species (ROS). The central thiol (-S-S-) bond in GSSG can undergo free rotation, providing multiple conformations with respect to the S-S bridge. The six titratable sites of GSSG, which are influenced by pH variations, affect these conformations in solution, whereas in solids, additionally crystal packing effects come into play.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!