Currently, FLT3 tyrosine kinase inhibitors (TKIs) are emerging as the most promising drug therapy to overcome the dismal prognosis of acute myelogenous leukemia (AML) patients harboring internal tandem duplications (ITDs) of FLT3. However, up-front drug resistance occurs in approximately 30% of patients, and molecular mechanisms of resistance are poorly understood. Here, we have uncovered a novel mechanism of primary resistance to FLT3 TKIs in AML: an FLT3 receptor harboring a nonjuxtamembrane ITD atypically integrating into the beta-2 sheet of the first kinase domain (FLT3_ITD627E) induces dramatic up-regulation of the anti-apoptotic myeloid cell leukemia 1 protein (MCL-1). Using RNA interference technology, deregulated MCL-1 protein expression was shown to play a major role in conferring the resistance phenotype of 32D_ITD627E cells. Enhanced and sustained binding of the adaptor protein GRB-2 to the FLT3_ITD627E receptor is involved in MCL-1 up-regulation and is independent from TKI (PKC412)-induced inhibition of the receptor kinase. Thus, we describe a new mechanism of primary resistance to TKIs, which operates by reprogramming local and distant signal transduction events of the FLT3 tyrosine kinase. The data presented suggest that particular ITDs of FLT3 may be associated with rewired signaling and differential responsiveness to TKIs.

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood-2007-11-126664DOI Listing

Publication Analysis

Top Keywords

mechanism primary
12
primary resistance
12
flt3 tyrosine
8
tyrosine kinase
8
itds flt3
8
resistance
6
flt3
6
novel molecular
4
molecular mechanism
4
resistance flt3-kinase
4

Similar Publications

Therapeutic drug development for central nervous system injuries, such as traumatic brain injury (TBI), presents significant challenges. TBI results in primary mechanical damage followed by secondary injury, leading to cognitive dysfunction and memory loss. Our recent study demonstrated the potential of carbon monoxide-releasing molecules (CORMs) to improve TBI recovery by enhancing neurogenesis.

View Article and Find Full Text PDF

Telomerase in cancer- ongoing quest and future discoveries.

Mol Biol Rep

January 2025

Department of Integrative Biology, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.

Telomerase, constituted by the dynamic duo of telomerase reverse transcriptase (TERT), the catalytic entity, and an integral RNA component (TERC), is predominantly suppressed in differentiated human cells due to postnatal transcriptional repression of the TERT gene. Dysregulation of telomerase significantly contributes to cancer development via telomere-dependent and independent mechanisms. Telomerase activity is often elevated in advanced cancers, with TERT reactivation and upregulation of TERC observed in early tumorigenesis.

View Article and Find Full Text PDF

Predicting health-related outcomes can help with proactive healthcare planning and resource management. This is especially important on the older population, an age group growing in the coming decades. Considering longitudinal rather than cross-sectional information from primary care electronic health records (EHRs) can contribute to more informed predictions.

View Article and Find Full Text PDF

The interfacial mechanical characteristics of sandwich structures are crucial in defining the comprehensive mechanical performance of the whole structure. Nevertheless, in practical applications, the interface often emerges as the weakest segment due to potential defects in the interface of porous metal sandwich plates (PMSP). This study aims to explore the regulatory mechanisms influencing the mechanical characteristics of nano-SiO-reinforced aluminum foam sandwich structure (AFS) interfaces and to propose an effective strategy to achieve AFS interfaces with superior and stable mechanical properties.

View Article and Find Full Text PDF

The Formation and Features of Massive Vacuole Induced by Nutrient Deficiency in Human Embryonic Kidney Cells.

Front Biosci (Landmark Ed)

January 2025

Department of Cardiovascular Medicine, Binzhou Medical University Hospital, 256603 Binzhou, Shandong, China.

Background: Cellular vacuolization is a commonly observed phenomenon under physiological and pathological conditions. However, the mechanisms underlying vacuole formation remain largely unresolved.

Methods: LysoTracker Deep Red probes and Enhanced Green Fluorescent Protein-tagged light chain 3B (LC3B) plasmids were employed to differentiate the types of massive vacuoles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!