Differential time- and NADPH-dependent inhibition of CYP2C19 by enantiomers of fluoxetine.

Drug Metab Dispos

BD Biosciences, BD Gentest Contract Research Services, 6 Henshaw Street, Woburn, MA 01801, USA.

Published: April 2009

Fluoxetine [+/--N-methyl-3-phenyl-3-[(alpha, alpha, (-trifluoro-p-tolyl)oxy]-propylamine)] a selective serotonin reuptake inhibitor, is widely used in treating depression and other serotonin-dependent disease conditions. Racemic, (R)- and (S)-fluoxetine are potent reversible inhibitors of CYP2D6, and the racemate has been shown to be a mechanism-based inhibitor of CYP3A4. Racemic fluoxetine also demonstrates time- and concentration-dependent inhibition of CYP2C19 catalytic activity in vitro. In this study, we compared fluoxetine, its (R)- and (S)-enantiomers, ticlopidine, and S-benzylnirvanol as potential time-dependent inhibitors of human liver microsomal CYP2C19. In a reversible inhibition protocol (30 min preincubation with liver microsomes without NADPH), we found (R)-, (S)- and racemic fluoxetine to be moderate inhibitors with IC(50) values of 21, 93, and 27 microM, respectively. However, when the preincubation was supplemented with NADPH, IC(50) values shifted to 4.0, 3.4, and 3.0 microM, respectively resulting in IC(50) shifts of 5.2-, 28-, and 9.3-fold. Ticlopidine showed a 1.8-fold shift in IC(50) value, and S-benzylnirvanol shifted right (0.41-fold shift). Follow-up K(I) and k(inact) determinations with fluoxetine confirmed time-dependent inhibition [K(I) values of 6.5, 47, and 14 microM; k(inact) values of 0.023, 0.085, 0.030 min(-1) for (R)-, (S)-, and racemate, respectively]. Although the (S)-isomer exhibits a much lower affinity for CYP2C19 inactivation relative to the (R)-enantiomer, it exhibits a more rapid rate of inactivation. Racemic norfluoxetine exhibited an 11-fold shift (18-1.5 microM) in IC(50) value, suggesting that conversion of fluoxetine to this metabolite represents a metabolic pathway leading to time-dependent inhibition. These data provide an improved understanding of the drug-interaction potential of fluoxetine.

Download full-text PDF

Source
http://dx.doi.org/10.1124/dmd.108.025726DOI Listing

Publication Analysis

Top Keywords

inhibition cyp2c19
8
fluoxetine
8
racemic fluoxetine
8
ic50 values
8
values microm
8
microm ic50
8
time-dependent inhibition
8
inhibition
5
ic50
5
differential time-
4

Similar Publications

Potential Interaction of Pinocembrin with Drug Transporters and Hepatic Drug-Metabolizing Enzymes.

Pharmaceuticals (Basel)

January 2025

Research Center of Transport Protein for Medical Innovation, Department of Physiology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400, Thailand.

: Pinocembrin is a promising drug candidate for treating ischemic stroke. The interaction of pinocembrin with drug transporters and drug-metabolizing enzymes is not fully revealed. The present study aims to evaluate the interaction potential of pinocembrin with cytochrome P450 (CYP450: CYP2B6, CYP2C9, and CYP2C19) and drug transporters including organic anion transporters (OAT1 and OAT3), organic cation transporters (OCT1 and OCT2), multidrug and toxin extrusion (MATE1 and MATE2, P-glycoprotein (P-gp), and breast cancer resistance protein (BCRP).

View Article and Find Full Text PDF

Introduction: Deglycosylated azithromycin (Deg-AZM), a new transgelin agonist with positive therapeutic effects on slow transit constipation, has been approved for clinical trials in 2024. This work investigated the drug metabolism and transport of Deg-AZM to provide research data for further development of Deg-AZM.

Methods: A combination of UPLC-QTOF-MS was used to obtain metabolite spectra of Deg-AZM in plasma, urine, feces and bile.

View Article and Find Full Text PDF

CYP2C19 Genotype-Guided Antiplatelet Therapy and Clinical Outcomes in Patients Undergoing a Neurointerventional Procedure.

Clin Transl Sci

January 2025

Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.

In neurovascular settings, including treatment and prevention of ischemic stroke and prevention of thromboembolic complications after percutaneous neurointerventional procedures, dual antiplatelet therapy with a P2Y12 inhibitor and aspirin is the standard of care. Clopidogrel remains the most commonly prescribed P2Y12 inhibitor for neurovascular indications. However, patients carrying CYP2C19 no-function alleles have diminished capacity for inhibition of platelet reactivity due to reduced formation of clopidogrel's active metabolite.

View Article and Find Full Text PDF

Background: Clopidogrel, an antiplatelet drug commonly used in cardiovascular disease, is metabolized by the liver mainly through CYP2C19. Concomitant use of Proton pump inhibitors along with clopidogrel may affect the potency of clopidogrel by CYP2C19 inhibition. However, a novel PPI, ilaprazole is known to differ in its pharmacokinetic features, given the potential differences between ilaprazole's interactions and their metabolism with clopidogrel.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!