Proteolytically active calpain-3/p94 is clearly vital for normal muscle function, since its absence leads to limb girdle muscular dystrophy 2A, but its function and regulatory control are poorly understood. Here we use single muscle fibers, individually skinned by microdissection, to investigate the diffusibility and autolytic activation of calpain-3 in situ. Virtually all calpain-3 present in mature muscle fibers is tightly bound in the vicinity of the titin N2A line and triad junctions and remains so irrespective of fiber stretching or raised [Ca(2+)]. Most calpain-3 is evidently bound within the contractile filament lattice, because (i) its slow diffusional loss is slowed further by locking myosin and actin into rigor and (ii) detergent dispersion of membranes causes rapid washout of most ryanodine receptors and sarcoplasmic reticulum Ca(2+) pumps with little accompanying washout of calpain-3. Calpain-3 autolyzes (becoming proteolytically active) in a tightly calcium-dependent manner. It remains in its nonactivated full-length form if [Ca(2+)] is maintained at < or = 50 nm, the normal resting level, even with brief increases to 2-20 mum during repeated tetanic contractions, but it becomes active (though still bound) if [Ca(2+)] is kept slightly elevated at 200 nm ( approximately 20% autolysis in 1 h). Calpain-3 did not spontaneously autolyze even when free in solution with 200 nm Ca(2+) for up to 60 min. These findings explain why calpain-3 remains quiescent with normal exercise but is activated following eccentric (stretching) contractions, when resting [Ca(2+)] is elevated, and how a protease such as calpain-3 can be very Ca(2+)-sensitive yet highly specific in its actions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2658075PMC
http://dx.doi.org/10.1074/jbc.M808655200DOI Listing

Publication Analysis

Top Keywords

proteolytically active
8
muscle fibers
8
calpain-3
8
[ca2+] elevated
8
[ca2+]
5
endogenous calpain-3
4
calpain-3 activation
4
activation governed
4
governed small
4
small increases
4

Similar Publications

Many oncoproteins are important therapeutic targets because of their critical role in inducing rapid cell proliferation, which represents one of the salient hallmarks of cancer. Chronic Myeloid Leukemia (CML) is a cancer of hematopoietic stem cells that is caused by the oncogene BCR-ABL1. BCR-ABL1 encodes a constitutively active tyrosine kinase protein that leads to the uncontrolled proliferation of myeloid cells, which is a hallmark of CML.

View Article and Find Full Text PDF

Lactic acid bacteria (LAB), traditionally consumed as fermented foods, are now being applied to the medical field beyond health-functional food as probiotics. Therefore, it is necessary to continuously discover and evaluate new strains with suitable probiotic characteristics, mainly focusing on safety. In this study, we isolated eight new strains from postmenopausal vaginal fluid using culturomics approaches, an emerging area of interest.

View Article and Find Full Text PDF

Corticosteroid binding globulin (CBG; SERPINA6) binds >85% of circulating glucocorticoids but its influence on their metabolic actions is unproven. Targeted proteolytic cleavage of CBG by neutrophil elastase (NE; ELANE) significantly reduces CBG binding affinity, potentially increasing 'free' glucocorticoid levels at sites of inflammation. NE is inhibited by alpha-1-antitrypsin (AAT; SERPINA1).

View Article and Find Full Text PDF

Organophosphate esters inhibit enzymatic proteolysis through non-covalent interactions.

Environ Int

January 2025

Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China. Electronic address:

Enzymatic proteolysis is the key process to produce bioavailable nitrogen in natural terrestrial and aquatic ecosystems for microorganisms and plants. However, little is known on how protein degradation is influenced by organic contaminants. As we known, the overuse of organophosphate esters (OPEs) has caused serious pollution in soil, water, and sediment.

View Article and Find Full Text PDF

Proteolysis-targeting chimeras (PROTACs) are heterobifunctional molecules that target undruggable proteins, enhance selectivity and prevent target accumulation through catalytic activity. The unique structure of PROTACs presents challenges in structural identification and drug design. Liquid chromatography (LC), combined with mass spectrometry (MS), enhances compound annotation by providing essential retention time (RT) data, especially when MS alone is insufficient.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!