The toxicokinetics and distribution of 2-hydroxyethyl methacrylate in mice.

Biomaterials

Institute of Clinical Chemistry, Faculty of Medicine, Campus Grosshadern, Ludwig-Maximilians-University of Munich, Munich, Germany.

Published: April 2009

The cytotoxicity of dental composites has been attributed to the release of residual monomers from polymerized resin-based composites due to the degradation processes or the incomplete polymerisation of materials. 2-Hydroxyethyl methacrylate (HEMA) is one of the major components released from dental resin-based composites. It was shown in vitro that HEMA was released into the adjacent biophase from such materials during the first days after placement. In this study uptake, distribution, and excretion of 14C-HEMA applied via gastric tube or subcutaneous administration at dose levels well above those encountered in dental care were examined in mice to test the hypothesis that HEMA can reach cytotoxic levels in mammalian tissues. 14C-HEMA was taken up rapidly from the stomach and intestines after gastric administration and was widely distributed in the body following administration by each route. Most 14C was excreted within one day as (14)CO(2). Two metabolic pathways of 14C-HEMA can be described. The peak HEMA levels in all tissues examined after 24h were lower than known toxic levels. Therefore the study did not support the hypothesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2008.12.061DOI Listing

Publication Analysis

Top Keywords

2-hydroxyethyl methacrylate
8
resin-based composites
8
toxicokinetics distribution
4
distribution 2-hydroxyethyl
4
methacrylate mice
4
mice cytotoxicity
4
cytotoxicity dental
4
dental composites
4
composites attributed
4
attributed release
4

Similar Publications

HEMA-free versus HEMA-containing adhesive systems: a systematic review.

Syst Rev

January 2025

Conservative Dentistry Department, Faculty of Dentistry, Mansoura University, Mansoura, Postal Code, 35516, Egypt.

Background: Hydrophilic monomer 2-hydroxyethyl methacrylate (HEMA)-free adhesive systems are gaining increasing popularity nowadays. Although the addition of HEMA to dental adhesives improves dentin wettability and resin diffusion into demineralized collagen fibrils, HEMA's high hydrophilicity can lead to hydrolytic degradation of the adhesive interface. Thus, HEMA-free adhesive systems have been developed.

View Article and Find Full Text PDF

Oxazolidine is a new category of stimuli-chromic compounds that has unique intelligent behaviors such as halochromism, hydrochromism, solvatochromism, and ionochromism, all of which have potential applications for designing and constructing chemosensors by using functionalized-polymer nanocarriers. Here, the poly(MMA--HEMA) based nanoparticles were synthesized by emulsion copolymerizing methyl methacrylate (MMA) and 2-hydroxyethyl methacrylate (HEMA) in different copolymer compositions. The poly(MMA--HEMA) based nanoparticles were modified physically with tertiary amine-functionalized oxazolidine (as an intelligent pH-responsive organic dye) to prepare halochromic latex nanoparticles.

View Article and Find Full Text PDF

In vivo performance of amorphous solid dispersions based on water-insoluble versus water-soluble carriers: Fenofibrate case study.

Int J Pharm

January 2025

Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada. Electronic address:

The objective of this study is to address the unanswered question whether sustained supersaturation generated from amorphous solid dispersions (ASDs) formulated in insoluble hydrogel carriers will result in better bioavailability over that of spring-and-parachute type of dissolution profiles of ASDs formulated in water-soluble carriers. This was achieved by investigating the effects of supersaturation generation rates and doses on the extent of absorption (i.e.

View Article and Find Full Text PDF

Biomimetic bone cartilage scaffolds based on trilayer methacrylated hydroxyapatite/GelMA composites for full-thickness osteochondral regeneration.

Int J Biol Macromol

January 2025

Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou 350122, China. Electronic address:

Since cartilage injury is often accompanied by subchondral bone damage, conventional single-phase materials cannot accurately simulate the osteochondral structure or repair osteochondral injury. In this work, a gradient gelatin-methacryloyl (GelMA) hydrogel scaffold was constructed by a layer-by-layer stacking method to realize full-thickness regeneration of cartilage, calcified cartilage and subchondral bone. Of note, to surmount the inadequate mechanical property of GelMA hydrogel, nanohydroxyapatite (nHA) was incorporated and further functionalized with hydroxyethyl methacrylate (nHA-hydroxyethyl methacrylate, nHAMA) to enhance the interfacial adhesion with the hydrogel, resulting in better mechanical strength akin to human bone.

View Article and Find Full Text PDF

Investigation of chitin grafting: thermal, antioxidant and antitumor properties.

Discov Nano

January 2025

Institute of Science, Department of Chemistry, Firat University, 23200, Elazığ, Turkey.

In this study, firstly chitin was reacted with chloracetyl chloride to synthesize the macroinitiator chitinchloroacetate (Ch.ClAc). Then, graft copolymers of methacrylamide (MAM), diacetone acrylamide (DAAM), N-(4-nitrophenyl)acrylamide (NPA), and 2-hydroxyethyl methacrylate (HEMA) monomers were synthesized by atom transfer radical polymerization (ATRP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!