Matrix solid-phase dispersion (MSPD) as a sample preparation method for the determination of two potential endocrine disruptors, linuron and diuron and their common metabolites, 1-(3,4-dichlorophenyl)-3-methylurea (DCPMU), 1-(3,4-dichlorophenyl) urea (DCPU) and 3,4-dichloroaniline (3,4-DCA) in food commodities has been developed. The influence of the main factors on the extraction process yield was thoroughly evaluated. For that purpose, a 3 fractional factorial design in further combination with artificial neural networks (ANNs) was employed. The optimal networks found were afterwards used to identify the optimum region corresponding to the highest average recovery displaying at the same time the lowest standard deviation for all analytes. Under final optimal conditions, potato samples (0.5 g) were mixed and dispersed on the same amount of Florisil. The blend was transferred on a polypropylene cartridge and analytes were eluted using 10 ml of methanol. The extract was concentrated to 50 microl of acetonitrile/water (50:50) and injected in a high performance liquid chromatography coupled to UV-diode array detector system (HPLC/UV-DAD). Recoveries ranging from 55 to 96% and quantification limits between 5.3 and 15.2 ng/g were achieved. The method was also applied to other selected food commodities such as apple, carrot, cereals/wheat flour and orange juice demonstrating very good overall performance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2008.12.070DOI Listing

Publication Analysis

Top Keywords

artificial neural
8
neural networks
8
determination potential
8
potential endocrine
8
endocrine disruptors
8
matrix solid-phase
8
solid-phase dispersion
8
food commodities
8
experimental design
4
design approach
4

Similar Publications

Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent chronic liver condition characterized by excessive hepatic fat accumulation. Early diagnosis is crucial as NAFLD can progress to more severe conditions like steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma without timely intervention. While liver biopsy remains the gold standard for NAFLD assessment, abdominal ultrasound (US) imaging has emerged as a widely adopted non-invasive modality due to convenience and low cost.

View Article and Find Full Text PDF

Classifying the molecular subtype of breast cancer using vision transformer and convolutional neural network features.

Breast Cancer Res Treat

January 2025

Department of Radiological Technology, Faculty of Medical Technology, Niigata University of Health and Welfare, 1398 Shimamichou, Kita-Ku, Niigata, Japan.

Purpose: Identification of the molecular subtypes in breast cancer allows to optimize treatment strategies, but usually requires invasive needle biopsy. Recently, non-invasive imaging has emerged as promising means to classify them. Magnetic resonance imaging is often used for this purpose because it is three-dimensional and highly informative.

View Article and Find Full Text PDF

Background: Perineural invasion (PNI) in colorectal cancer (CRC) is a significant prognostic factor associated with poor outcomes. Radiomics, which involves extracting quantitative features from medical imaging, has emerged as a potential tool for predicting PNI. This systematic review and meta-analysis aimed to evaluate the diagnostic accuracy of radiomics models in predicting PNI in CRC.

View Article and Find Full Text PDF

Exploiting biomimetic perception of invisible spectra in flexible artificial human vision systems (HVSs) is crucial for real-time dynamic information processing. Nevertheless, the fast processing of motion objects in natural environments poses a challenge, necessitating that these artificial HVSs simultaneously have swift photoresponse and nonvolatile memory. Here, inspired by the human retina, we propose a flexible UV neuromorphic visual synaptic device (NeuVSD) based on GaO@GaN-composited nanowires for dynamic visual perception.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!