Home baseline and laboratory stressor (Trier Social Stress Test for Children) measures of salivary cortisol were obtained from 82 participants (40 girls) aged 9, 11, 13, and 15 years. Measures of pubertal development, self-reported stress, parent reports of child depressive symptoms and fearful temperament, and cardiac measures of sympathetic and parasympathetic activity were also obtained. Significant increases in the home cortisol baselines were found with age and pubertal development. Cortisol stress reactivity differed by age group with 11-year-olds and 13-year-old boys showing blunted reactivity and 9-year-olds, 13-year-old girls, and 15-year-olds showing significant cortisol reactions. Cortisol reactivity correlated marginally with sexual maturation. Measures of sympathetic activity revealed increased sympathetic modulation with age. Higher sympathetic tone was associated with more fearful temperament, whereas greater cortisol reactivity was associated with more anxious and depressed symptoms for girls. The importance of these findings for the hypothesis that puberty-associated increases in hypothalamic-pituitary-adrenal axis activity heightens the risk of psychopathology is discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3933029PMC
http://dx.doi.org/10.1017/S0954579409000054DOI Listing

Publication Analysis

Top Keywords

pubertal development
8
fearful temperament
8
measures sympathetic
8
cortisol reactivity
8
cortisol
6
developmental changes
4
changes hypothalamus-pituitary-adrenal
4
activity
4
hypothalamus-pituitary-adrenal activity
4
activity transition
4

Similar Publications

Oral contraceptives (OCs) are approved for use after onset of menarche, which is well before brain maturation is complete. OC use may induce biochemical changes in the brain, especially during the neurobiologically dynamic adolescent/young adult years. MicroRNA cargo in L1CAM-associated extracellular vesicles was measured from serum samples collected from young women using the miRCURY LNA miRNA Focus PCR Panel (Qiagen) and validated using quantitative PCR.

View Article and Find Full Text PDF

Background: Better affordability of data plans and an increase in "budget" smartphones have resulted in an exponential rise in internet and smartphone users. The ease of access to sexually explicit material (SEM) coupled with adolescents' impulsivity makes them prone to excessive SEM exposure and may affect the development of sexuality via the perceived realism of such content. This study was done to study the influence between problematic smartphone usage (PSU) and sexuality development among late adolescent boys.

View Article and Find Full Text PDF

Purpose: Recent research suggests that caffeine use may promote a range of adjustment difficulties among adolescents, particularly during the middle school years. The effects of caffeine are particularly concerning given the increased use of high-dosage caffeine products, such as energy drinks, among youth. We investigated the influence of caffeine use on trajectories of conduct problems among early adolescents.

View Article and Find Full Text PDF

and miRNA regulate mammalian pubertal initiation and Gonadotropin-releasing hormone (GnRH) production. However, it remains unclear which signaling pathways regulates to modulate GnRH production. In this study, the mRNA expression levels of and in the pubertal and juvenile goat hypothalamus and pituitary gland were detected, and expression in the pubertal hypothalamus decreased significantly compared with that in juvenile tissues.

View Article and Find Full Text PDF

Thematic Review of Endocrine Disruptors and Their Role in Shaping Pubertal Timing.

Children (Basel)

January 2025

Department of Pediatrics, Division of Pediatric Endocrinology, Demiroğlu Bilim University, 34394 Istanbul, Türkiye.

This review examines the inconsistent effects of endocrine-disrupting chemicals (EDCs) and pollutants on pubertal timing, emphasizing the methodological challenges contributing to variability in findings. Data from nine key studies reveal that chemicals such as BPA, phthalates, and PFAS impact pubertal onset differently based on exposure timing, dosage, and sex. For instance, BPA is linked to earlier puberty in girls but delayed onset in boys, while other EDCs show mixed effects across populations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!