Background: Gene expression studies related to cancer diagnosis and treatment are important. In order to conduct such experiment accurately, absolutely reliable housekeeping genes are essential to normalize cancer related gene expression. The most important characteristics of such genes are their presence in all cells and their expression levels remain relatively constant under different experimental conditions. However, no single gene of this group of genes manifests always stable expression levels under all experimental conditions. Incorrect choice of housekeeping genes leads to interpretation errors of experimental results including evaluation and quantification of pathological gene expression. Here, we examined (a) the degree of GAPDH expression regulation in Hep-1-6 mouse hepatoma and Hep-3-B and HepG2 human hepatocellular carcinoma cell lines as well as in human lung adenocarcinoma epithelial cell line (A-549) in addition to both HT-29, and HCT-116 colon cancer cell lines, under hypoxic conditions in vitro in comparison to other housekeeping genes like beta-actin, serving as experimental loading controls, (b) the potential use of GAPDH as a target for tumor therapeutic approaches was comparatively examined in vitro on both protein and mRNA level, by western blot and semi quantitative RT-PCR, respectively.
Findings: No hypoxia-induced regulatory effect on GAPDH expression was observed in the cell lines studied in vitro that were; Hep-1-6 mouse hepatoma and Hep-3-B and HepG2 human hepatocellular carcinoma cell lines, Human lung adenocarcinoma epithelial cell line (A-549), both colon cancer cell lines HT-29, and HCT-116.
Conclusion: As it is the case for human hepatocellular carcinoma, mouse hepatoma, human colon cancer, and human lung adenocarcinoma, GAPDH represents an optimal choice of a housekeeping gene and/(or) loading control to determine the expression of hypoxia induced genes in tumors of different origin. The results confirm our previous findings in human glioblastoma that this gene is not an attractive target for tumor therapeutic approaches because of the lack of GAPDH regulation under hypoxia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2646737 | PMC |
http://dx.doi.org/10.1186/1756-0500-2-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!