Worker populations often provide data on adverse responses associated with exposure to potential hazards. The relationship between hazard exposure levels and adverse response can be modeled and then inverted to estimate the exposure associated with some specified response level. One concern is that this endpoint may be sensitive to the concentration metric and other variables included in the model. Further, it may be that the models yielding different risk endpoints are all providing relatively similar fits. We focus on evaluating the impact of exposure on a continuous response by constructing a model-averaged benchmark concentration from a weighted average of model-specific benchmark concentrations. A method for combining the estimates based on different models is applied to lung function in a cohort of miners exposed to coal dust. In this analysis, we see that a small number of the thousands of models considered survive a filtering criterion for use in averaging. Even after filtering, the models considered yield benchmark concentrations that differ by a factor of 2 to 9 depending on the concentration metric and covariates. The model-average BMC captures this uncertainty, and provides a useful strategy for addressing model uncertainty.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1539-6924.2008.01178.xDOI Listing

Publication Analysis

Top Keywords

model-averaged benchmark
8
benchmark concentration
8
continuous response
8
concentration metric
8
benchmark concentrations
8
models considered
8
concentration
4
concentration estimates
4
estimates continuous
4
response
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!