The normal cellular form of the prion protein PrP(C) is a glycosylphosphatidylinositol-linked cell-surface glycoprotein expressed primarily by cells of the nervous and immune systems. There is evidence to suggest that PrP(C) is involved in cell signalling and cellular homeostasis. We have investigated the immune composition of peripheral lymphoid tissue in PrP-/-, wild-type, tg19 and tga20 strains of mice, which express 0, 1-, 3-5- and 4-7-fold higher levels of PrP(C), respectively, relative to wild-type mice. Our data show that tga20 mice have a reduced number of spleen T-cell receptor (TCR)-alphabeta(+) T cells and an increased number of TCR-gammadelta(+) T cells compared with wild-type mice. This was not seen in tg19 mice, which also express elevated levels of PrP(C). In addition, we have found that the Prnp transgene in the tga20 genome is located centrally on chromosome 17, in or around genes involved in T-cell development. Significantly, mRNA transcripts from pre-TCR-alpha (pTalpha), a T-cell development gene located on mouse chromosome 17, are drastically reduced in tga20 mice, indicative of a perturbation in pTalpha gene regulation. We propose that the immune cell phenotype of tga20 mice may be caused by the insertional mutation of the Prnp transgene into the pTalpha gene or its regulatory elements.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2691788 | PMC |
http://dx.doi.org/10.1111/j.1365-2567.2008.02944.x | DOI Listing |
Front Vet Sci
November 2024
National Animal Disease Center, Agricultural Research Service (USDA), Ames, IA, United States.
The ability to reliably induce bovine digital dermatitis (DD) in naive calves provides unique opportunities to evaluate immune responses of the calves to infection after disease induction, during healing, and after subsequent re-infection. Dairy calves infected in a previous induction trial were held until lesions resolved and were then re-infected in parallel with naïve calves. Humoral and cell-mediated responses were assessed via serum antibody titer and lymphocyte proliferation analysis with responses of previously infected calves compared with responses of the newly infected calves and naïve calves.
View Article and Find Full Text PDFPediatric high-grade gliomas (pHGG) and pediatric diffuse midline gliomas (pDMG) are devastating diseases without durable and curative options. Although targeted immunotherapy has shown promise, the field lacks immunocompetent animal models to study these processes in detail. To achieve this, we developed a fully immunocompetent, genetically engineered mouse model (GEMM) for pDMG and pHGG that incorporates the glioma-associated antigen, interleukin 13 receptor alpha 2 (IL13RA2).
View Article and Find Full Text PDFEur J Immunol
December 2024
Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Tumor cell-intrinsic ubiquitin-conjugating enzyme Ubc13 promotes tumorigenesis, yet how Ubc13 in immune cell compartments regulates tumor progression remains elusive. Here, we show that myeloid-specific deletion of Ubc13 (Ubc13Lyz2) leads to accelerated transplanted lung tumor growth in mice. Compared with their littermate controls, tumor-bearing Ubc13Lyz2 mice had lower proliferation and effector function of CD8 T lymphocytes, accompanied by increased infiltration of myeloid-derived suppressor cells within the tumor microenvironment.
View Article and Find Full Text PDFJ Dent Res
December 2024
Department of Immunology and Molecular Microbiology in Dental Science, Seoul National University School of Dentistry, Seoul, Republic of Korea.
Oral lichen planus (OLP) is a chronic T cell-mediated inflammatory mucosal disease of unknown etiology. The lack of suitable animal models has hampered understanding of its etiopathogenesis. This study aimed to clarify the contribution of bacterial infection and zinc deficiency (ZD) in OLP pathogenesis by developing a murine model.
View Article and Find Full Text PDFBiotechnol J
December 2024
School of Pharmacy, Binzhou Medical University, Yantai, China.
Programmed death protein-ligand 1 (PD-L1) inhibitors demonstrate significant antitumor efficacy by modulating T-cell activity and inhibiting the PD-1/PD-L1 pathway, thus enhancing immune responses. Despite their robust effects, systemic administration of these inhibitors is linked to severe immune toxicity. To address this issue, we engineered a strain, REP, which releases PD-L1 nanoantibodies (PD-L1nb) to treat breast cancer and attenuate immunotherapy-related side effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!