Two bromide-bearing, fluorene-based, conjugated polymers with oligo(ethylene glycol)- and poly(ethylene glycol)-tethered spacers have been prepared by the Suzuki coupling polymerization of bromide-bearing, fluorene monomers. beta-Glucose and alpha-mannose residues have been covalently attached to the conjugated polymers by post-polymerization functionalization of the precursor polymers with thiol-functionalized carbohydrates under basic conditions through thioether linkage. A glucose-bearing glycopolymer with oligo(ethylene glycol)-tethered spacers (polymer A) displays poor water solubility. However, glycopolymers with poly(ethylene glycol)-tethered spacers (polymers B and C) are highly water-soluble due to their long, flexible, hydrophilic spacers. Incubation of the ORN178 strain of Escherichia coli (E. coli) with alpha-mannose-bearing glycopolymer (polymer C) results in the formation of fluorescent cell clusters, causing significant red shifts in UV/Vis absorption and fluorescent spectra of the polymer through multivalent cooperative interactions of the polymeric carbohydrates with the bacterial pili. In contrast, polymer C displays no interactions with a mutant ORN208 strain of E. coli.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.200801875DOI Listing

Publication Analysis

Top Keywords

glycol-tethered spacers
16
polyethylene glycol-tethered
12
highly water-soluble
8
glycopolymers polyethylene
8
escherichia coli
8
conjugated polymers
8
polymer displays
8
spacers
5
water-soluble fluorescent
4
fluorescent conjugated
4

Similar Publications

The interaction affinity between human IgG and a short peptide ligand (hexameric HWRGWV) was investigated by following the shifts in frequency and energy dissipation in a quartz crystal microbalance (QCM). HWRGWV was immobilized by means of poly(ethylene glycol) tethered on QCM sensors coated with silicon oxide, which enhanced the accessibility of the peptide to hIgG and also passivated the surface. Ellipsometry and ToF-SIMS were employed for surface characterization.

View Article and Find Full Text PDF

The realization of a solid-supported lipid bilayer acting as a workbench for the study of membrane processes is a difficult task. For robustness, the bilayer has to be tethered to the substrate. At the same time, diffusion of the lipids and plastic deformations of the membrane should not be obstructed.

View Article and Find Full Text PDF

Near-infrared emissive BODIPY polymeric dye bearing cancer-homing cyclic arginine-glycine-aspartic acid (RGD) peptide residues (polymer B) was prepared by post-polymerization functionalization of BODIPY polymeric dye bearing bromo groups through tetra(ethylene glycol) tethered spacers (polymer A) with thiol-functionalized RGD cancer-homing peptide through thioether bonds under a mild basic condition. Polymer B possesses excellent water solubility, good photostability, biocompatibility and resistance to nonspecific interactions to normal endothelial cells, and can efficiently detect breast tumor cells through specific cooperative binding of cancer-homing RGD peptides to αvβ3 integrins of cancer cells while its parent polymer A without RGD residues fails to target cancer cells.

View Article and Find Full Text PDF

Two bromide-bearing, fluorene-based, conjugated polymers with oligo(ethylene glycol)- and poly(ethylene glycol)-tethered spacers have been prepared by the Suzuki coupling polymerization of bromide-bearing, fluorene monomers. beta-Glucose and alpha-mannose residues have been covalently attached to the conjugated polymers by post-polymerization functionalization of the precursor polymers with thiol-functionalized carbohydrates under basic conditions through thioether linkage. A glucose-bearing glycopolymer with oligo(ethylene glycol)-tethered spacers (polymer A) displays poor water solubility.

View Article and Find Full Text PDF

Heterobifunctional poly(ethylene glycol)-tethered bone morphogenetic protein-2-stimulated bone marrow mesenchymal stromal cell differentiation and osteogenesis.

Tissue Eng

May 2007

Department of Chemical Engineering, National Tsing Hua University, Hsinchu, and Department of Orthopedic Surgery, College of Medicine, Chang Gung Memorial Hospital-Keelung, Chang Gung University, Keelung, Taiwan.

We describe a biomimetic mode of insoluble signaling stimulation to provide target delivery of bone morphogenetic protein-2 (BMP-2), with the aim of prolonging the retention of BMP-2 use in bone tissue engineering and to enable its localized release in response to cellular activity. In our novel localization process, we used heterobifunctional acrylate-N-hydroxysuccinimide poly(ethylene glycol) (PEG) as a spacer to tether BMP-2 onto a poly(lactide-co-glycolide) scaffold. Use of PEG-tethered BMP-2 was feasible because BMP-2 retained its activity after covalent conjugation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!