A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Biomechanical injury response of leg subjected to combined axial compressive and bending loading. | LitMetric

Tibia fractures and dislocations among vehicle occupants injured in traffic collisions are costly and debilitating. The current criterion for predicting the occurrence of tibial shaft fracture in crash tests, the Tibia Index, relies on the combined bending and compressive strength at the mid-shaft location of the tibia. Recent studies have shown that tibial curvature and fibular load-sharing may influence the injury prediction of the leg and that the distal third section of the tibial shaft is the most commonly fractured shaft section in frontal crashes. In order to provide biomechanical injury data of the leg for a possible re-evaluation of the Tibia Index, the dynamic combined strength of twenty human legs at the distal third region was determined using varying axial compressive pre-load in the range of 2 to 8 kN followed by anterior-posterior impact loading close to the distal third region. The injury boundary of the leg in terms of the axial load and applied bending moment obtained from test data and from finite element simulations showed an opposed trend to that of the original Tibia Index. The data presented in the current study provides the necessary information about leg injury in combined loading to develop advanced human leg computational models.

Download full-text PDF

Source

Publication Analysis

Top Keywords

distal third
12
biomechanical injury
8
axial compressive
8
tibial shaft
8
third region
8
leg
6
tibia
5
injury response
4
response leg
4
leg subjected
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!