Protein kinase D1-mediated phosphorylation and subcellular localization of beta-catenin.

Cancer Res

Department of Surgery, Division of Urology, University of Massachusetts Medical School, Worcester, Massachusett 01655, USA.

Published: February 2009

beta-Catenin is essential for E-cadherin-mediated cell adhesion in epithelial cells and also acts as a key cofactor for transcription activity. We previously showed that protein kinase D1 (PKD1), founding member of the PKD family of signal transduction proteins, is down-regulated in advanced prostate cancer and interacts with E-cadherin. This study provides evidence that PKD1 interacts with and phosphorylates beta-catenin at Thr(112) and Thr(120) residues in vitro and in vivo; mutation of Thr(112) and Thr(120) results in increased nuclear localization of beta-catenin and is associated with altered beta-catenin-mediated transcription activity. It is known that mutation of Thr(120) residue abolishes binding of beta-catenin to alpha-catenin, which links to cytoskeleton, suggesting that PKD1 phosphorylation of Thr(120) could be critical for cell-cell adhesion. Overexpression of PKD1 represses beta-catenin-mediated transcriptional activity and cell proliferation. Epistatic studies suggest that PKD1 and E-cadherin are within the same signaling pathway. Understanding the molecular basis of PKD1-beta-catenin interaction provides a novel strategy to target beta-catenin function in cells including prostate cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-07-6270DOI Listing

Publication Analysis

Top Keywords

protein kinase
8
localization beta-catenin
8
transcription activity
8
prostate cancer
8
thr112 thr120
8
beta-catenin
6
pkd1
5
kinase d1-mediated
4
d1-mediated phosphorylation
4
phosphorylation subcellular
4

Similar Publications

Chordoma is a rare malignant tumor with a higher incidence in males than in females. There is an increasing number of clinical studies related to tyrosine kinase inhibitors (TKIs), yet the efficacy and safety of different drugs vary. In this single-arm meta-analysis evaluating the efficacy and safety of TKIs for chordoma treatment, 12 studies involving 365 patients were analyzed.

View Article and Find Full Text PDF

CaMKIIγ advances chronic intermittent hypoxia-induced cardiomyocyte apoptosis via HIF-1 signaling pathway.

Sleep Breath

January 2025

Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China.

Background: Our previous study have demonstrated chronic intermittent hypoxia (CIH) induced cardiomyocyte apoptosis and cardiac dysfunction. However, the molecular mechanisms are complicated and varied. In this study, we first investigated the CaMKIIγ expression and signaling pathway in the pathogenesis of cardiomyocyte apoptosis after CIH.

View Article and Find Full Text PDF

CDK5: Insights into its roles in diseases.

Mol Biol Rep

January 2025

Institute of Pathogenic Biology, Guilin Medical University, Guilin, 541199, China.

Cyclin-dependent kinase 5 (CDK5), a unique member of the CDK family, is a proline-directed serine/threonine protein kinase with critical roles in various physiological and pathological processes. Widely expressed in the central nervous system, CDK5 is strongly implicated in neurological diseases. Beyond its neurological roles, CDK5 is involved in metabolic disorders, psychiatric conditions, and tumor progression, contributing to processes such as proliferation, migration, immune evasion, genomic stability, and angiogenesis.

View Article and Find Full Text PDF

Receptors for the vasoactive adipokine apelin, termed APJ receptors, are G-protein-coupled receptors and are widely expressed throughout the cardiovascular system. APJ receptors can also signal via G-protein-independent pathways, including G-protein-coupled-receptor kinase 2 (GRK2), which inhibits nitric oxide synthase (eNOS) activity and nitric oxide (NO) production in endothelial cells. Apelin causes endothelium-dependent, NO-mediated relaxation of coronary arteries from normotensive animals, but the effects of activating APJ receptor signaling pathways in hypertensive coronary arteries are largely unknown.

View Article and Find Full Text PDF

Intestinal barrier damage causes an imbalance in the intestinal flora and microbial environment, promoting a variety of gastrointestinal diseases. This study aimed to explore the mechanism by which adipose-derived stem cells (ADSCs) repair intestinal barrier damage. The human colon adenocarcinoma cell line Caco-2 and rats were treated with lipopolysaccharide (LPS) to establish in vitro and in vivo models, respectively, of intestinal barrier damage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!