Phosphorylase kinase (PhK) coordinates hormonal and neuronal signals to initiate the breakdown of glycogen. The enzyme catalyzes the phosphorylation of inactive glycogen phosphorylase b (GPb), resulting in the formation of active glycogen phosphorylase a. We present a 9.9 angstroms resolution structure of PhK heterotetramer (alphabetagammadelta)4 determined by cryo-electron microscopy single-particle reconstruction. The enzyme has a butterfly-like shape comprising two lobes with 222 symmetry. This three-dimensional structure has allowed us to dock the catalytic gamma subunit to the PhK holoenzyme at a location that is toward the ends of the lobes. We have also determined the structure of PhK decorated with GPb at 18 angstroms resolution, which shows the location of the substrate near the kinase subunit. The PhK preparation contained a number of smaller particles whose structure at 9.8 angstroms resolution was consistent with a proteolysed activated form of PhK that had lost the alpha subunits and possibly the gamma subunits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2639635PMC
http://dx.doi.org/10.1016/j.str.2008.10.013DOI Listing

Publication Analysis

Top Keywords

angstroms resolution
16
glycogen phosphorylase
12
phosphorylase kinase
8
resolution location
8
structure phk
8
subunit phk
8
phk
6
structure
5
structure phosphorylase
4
kinase holoenzyme
4

Similar Publications

Computational microscopy with coherent diffractive imaging and ptychography.

Nature

January 2025

Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, CA, USA.

Microscopy and crystallography are two essential experimental methodologies for advancing modern science. They complement one another, with microscopy typically relying on lenses to image the local structures of samples, and crystallography using diffraction to determine the global atomic structure of crystals. Over the past two decades, computational microscopy, encompassing coherent diffractive imaging (CDI) and ptychography, has advanced rapidly, unifying microscopy and crystallography to overcome their limitations.

View Article and Find Full Text PDF

Polar vortex hidden in twisted bilayers of paraelectric SrTiO.

Nat Commun

December 2024

School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.

Polar topologies, such as vortex and skyrmion, have attracted significant interest due to their unique physical properties and promising applications in high-density memory devices. To date, all known polar vortices are present in or induced by ferroelectric materials. In this study, we find polar vortex arrays in paraelectric SrTiO.

View Article and Find Full Text PDF

Graphene-Assisted Electron-Based Imaging of Individual Organic and Biological Macromolecules: Structure and Transient Dynamics.

ACS Nano

December 2024

Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Key Laboratory of Polymer Chemistry & Physics, National Biomedical Imaging Center, Peking University, Beijing 100871, People's Republic of China.

Characterizing the structures, interactions, and dynamics of molecules in their native liquid state is a long-existing challenge in chemistry, molecular science, and biophysics with profound scientific significance. Advanced transmission electron microscopy (TEM)-based imaging techniques with the use of graphene emerged as promising tools, mainly due to their performance on spatial and temporal resolution. This review focuses on the various approaches to achieving high-resolution imaging of individual molecules and their transient interactions.

View Article and Find Full Text PDF

Source-dependent absorption Ångström exponent in the Los Angeles Basin: Multi-time resolution factor analyses of ambient PM and aerosol optical absorption.

Sci Total Environ

December 2024

Department of Public Health Sciences, University of Rochester, School of Medicine and Dentistry, Rochester, NY, USA; Institute for a Sustainable Environment, Clarkson University, Potsdam, NY, USA.

Advanced receptor models can leverage the information derived from optical and chemical variables as input by a variety of instruments at different time resolutions to extract the source specific absorption Ångström exponent (AAE) from aerosol absorption. The multilinear engine (ME-2), a Positive Matrix Factorization (PMF) solver, serves as a proficient tool for performing such analyses, thereby overcoming the constraints imposed by the assumptions in current optical source apportionment methods such as the Aethalometer approach since the use of a-priori AAE values introduces additional uncertainty into the results of optical methods. Comprehensive PM chemical speciation datasets, and aerosol absorption coefficients (b, λ) at seven wavelengths measured by an Aethalometer (AE33), were used in multi-time source apportionment (MT-PMF).

View Article and Find Full Text PDF

F electron-nuclear double resonance (ENDOR) spectroscopy is emerging as a method of choice to determine molecular distances in biomolecules in the angstrom to nanometer range. However, line broadening mechanisms in F ENDOR spectra can obscure the detected spin-dipolar coupling that encodes the distance information, thus limiting the resolution and accessible distance range. So far, the origin of these mechanisms has not been understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!