Several virulent bacteria have the ability to manipulate the host cell actin cytoskeleton as part of their pathogenic strategy. These pathogens subvert the host cell actin polymerization machinery for various purposes including motility within host cells, cell-to-cell spread, and to prevent phagocytic engulfment by professional phagocytes. In contrast to intracellular pathogens, pathogenic Escherichia coli (including both enterohemorrhagic and enteropathogenic E. coli) subvert actin polymerization from an extracellular position to facilitate adherence. This review summarizes recent data on the mechanisms by which pathogenic E. coli hijack members of the Wiskott-Aldrich syndrome protein family to manipulate actin polymerization within host cells, including the novel, and surprisingly simple, mechanism recently revealed for the EspFu effector.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.str.2008.12.001 | DOI Listing |
Braz J Biol
January 2025
Near East University, Operational Research Center in Healthcare, Mersin, Turkey.
Amidst the ongoing COVID-19 pandemic, the imperative of our time resides in crafting stratagems of utmost precision to confront the relentless SARS-CoV-2 and quell its inexorable proliferation. A paradigm-shifting weapon in this battle lies in the realm of nanoparticles, where the amalgamation of cutting-edge nanochemistry begets a cornucopia of inventive techniques and methodologies designed to thwart the advances of this pernicious pathogen. Nanochemistry, an artful fusion of chemistry and nanoscience, provides a fertile landscape for researchers to craft innovative shields against infection.
View Article and Find Full Text PDFSci Transl Med
January 2025
Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA.
Tissue-specific T cell immune responses play a critical role in maintaining organ health but can also drive immune pathology during both autoimmunity and alloimmunity. The mechanisms controlling intratissue T cell programming remain unclear. Here, we leveraged a nonhuman primate model of acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation to probe the biological underpinnings of tissue-specific alloimmune disease using a comprehensive systems immunology approach including multiparameter flow cytometry, population-based transcriptional profiling, and multiplexed single-cell RNA sequencing and TCR sequencing.
View Article and Find Full Text PDFSci Adv
January 2025
Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
Tissue-specific endothelial cells (ECs) are critical for the homeostasis of pancreatic islets and most other tissues. In vitro recapitulation of islet biology and therapeutic islet transplantation both require adequate vascularization, which remains a challenge. Using human reprogrammed vascular ECs (R-VECs), human islets were functionally vascularized in vitro, demonstrating responsive, dynamic glucose-stimulated insulin secretion and Ca influx.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63130.
bradyzoites reside in tissue cysts that undergo cycles of expansion, rupture, and release to foster chronic infection. The glycosylated cyst wall acts as a protective barrier, although the processes responsible for formation, remodeling, and turnover are not understood. Herein, we identify a noncanonical chitinase-like enzyme TgCLP1 that localizes to micronemes and is targeted to the cyst wall after secretion.
View Article and Find Full Text PDFArch Microbiol
January 2025
Symbiosis School of Biological Sciences, Symbiosis International (Deemed University)Lavale, Pune, Maharashtra, 412115, India.
Environmental factors play a crucial role in bacterial virulence. During transmission, in a non-host environment bacteria are exposed to various environmental stress which could alter bacterial physiology and virulence. N.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!