The infrared spectrum of the nitrobenzene anion isolated in solid argon is presented. The nitrobenzene anion was prepared by co-deposition of a nitrobenzene/Ar mixture with high-frequency discharged argon at 4 K. Photosensitive absorptions are assigned to different vibrational modes of the nitrobenzene anion on the basis of isotopic substitutions ((15)N and deuterium), as well as theoretical calculations. The anion loses one electron to give the neutral nitrobenzene upon visible light (500 < lambda < 600 nm) irradiation. Theoretical calculations predicated that the anion has a planar C(2v) symmetry with a shorter C-N bond and longer N-O bonds relative to those of neutral nitrobenzene.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp8083293 | DOI Listing |
Mikrochim Acta
January 2025
School of Science, Xihua University, Chengdu, 610039, People's Republic of China.
A dual-mode detection platform utilizing colorimetric and Raman was developed based on the exponential amplification reaction (EXPAR) strategy and a "core-satellite" structure constructed by bimetallic nanozymes to detect chloramphenicol (CAP). Initially, DNA-gated metal-organic frameworks (MOFs) incorporating cascaded amplification were used to be nanocarriers for the colorimetric and Raman reporter molecules (3,3',5,5'-tetramethylbiphenyl; TMB). Subsequently, assembled DNA served as gatekeepers to create a stimulus-responsive DNA-gated MOF (TMB@DNA/MOF).
View Article and Find Full Text PDFAnim Sci J
December 2024
Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Chemosphere
February 2025
College of Hydrosphere Science, Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan. Electronic address:
Efficient detection of chloramphenicol (CAP) in the environment and food products is crucial for addressing global health and environmental safety concerns. This study presents the development of a cost-effective hybrid electrocatalyst comprising lignocellulosic carbon sheets, graphene oxide, and manganese oxide (LCSs/GO@MnO) for CAP detection using a simple electrochemical sensor fabricated on a glassy carbon electrode (GCE) substrate. The synergistic interaction between LCSs, GO, and MnO enhance the electroactive surface area of GCE, facilitating effective dispersion and electrode modification.
View Article and Find Full Text PDFJ Pharmacol Sci
December 2024
Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, 577-8502, Japan. Electronic address:
We tested the hypothesis that Ca3.2 T-type Ca channels, which can be rebooted by sulfides from Zn inhibition under physiological conditions, and sulfide-generating enzymes including cystathionine-β-synthase (CBS) would participate in the colitis-related visceral pain in mice treated with 2,4,6-trinitrobenzene sulfonic acid (TNBS). The visceral hypersensitivity following TNBS-induced colitis was abolished by an inhibitor or genetic deletion of Ca3.
View Article and Find Full Text PDFMikrochim Acta
November 2024
Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, Key Laboratory of Pollution Monitoring and Control of Fujian Province, College of Chemistry, Chemical Engineering, and Environment, Minnan Normal University, Zhangzhou, 363000, People's Republic of China.
A photocurrent enhancing photoelectrochemical (PEC) immunosensor was developed for chloramphenicol (CAP) detection based on cation exchange reaction. The efficient split-type PEC immunosensor combined with controlled-release strategy was established using the ZnInS/TiO/TiC MXene (ZIS/T/M) composite as the photoactive material and CuO as the signal response probe. In the presence of target CAP, CuO-labeled CAP antibody (CuO-mAb) was introduced onto the microplate via a competitive-type immunoassay.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!