In recent years mass spectrometry based techniques have emerged as structural biology tools for the characterization of macromolecular, noncovalent assemblies. Many of these efforts involve preservation of intact protein complexes within the mass spectrometer, providing molecular weight measurements that allow the determination of subunit stoichiometry and real-time monitoring of protein interactions. Attempts have been made to further elucidate subunit architecture through the dissociation of subunits from the intact complex by colliding it into inert gas atoms such as argon or xenon. Unfortunately, the amount of structural information that can be derived from such strategies is limited by the nearly ubiquitous ejection of a single, unfolded subunit. Here, we present results from the gas-phase dissociation of protein-protein complexes upon collision into a surface. Dissociation of a series of tetrameric and pentameric proteins demonstrate that alternative subunit fragments, not observed through multiple collisions with gas atoms, can be generated through surface collision. Evidence is presented for the retention of individual subunit structure, and in some cases, retention of noncovalent interactions between subunits and ligands. We attribute these differences to the rapid large energy input of ion-surface collisions, which leads to the dissociation of subunits prior to the unfolding of individual monomers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3477242 | PMC |
http://dx.doi.org/10.1021/ac801883k | DOI Listing |
Proc Natl Acad Sci U S A
February 2025
Departments of Physics, Cell Biology and Biochemistry, Emory University, Atlanta, GA 30322.
Cellular actin networks exhibit distinct assembly and disassembly dynamics, primarily driven by multicomponent reactions occurring at the two ends of actin filaments. While barbed ends are recognized as the hotspot for polymerization, depolymerization is predominantly associated with pointed ends. Consequently, mechanisms promoting barbed-end depolymerization have received relatively little attention.
View Article and Find Full Text PDFJ Biol Chem
January 2025
T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, 21218, USA. Electronic address:
Truncated hemoglobins (TrHbs) have an ancient origin and are widely distributed in microorganisms where they often serve roles other than dioxygen transport and storage. In extremophiles, these small heme proteins must have features that secure function under challenging conditions: at minimum, they must be folded, retain the heme group, allow substrates to access the heme cavity, and maintain their quaternary structure if present and essential. The genome of the obligate psychropiezophile Shewanella benthica strain KT99 harbors a gene for a TrHb belonging to a little-studied clade of globins (subgroup 2 of group N).
View Article and Find Full Text PDFGenes (Basel)
January 2025
Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
Background: Eukaryotic RNA polymerase I consists of 12 or 11 core subunits and three dissociable subunits, Rrn3, A34, and A49. The A34 and A49 subunits exist as a heterodimer. In silico analysis of the A34 family of transcription factors demonstrates a commonly shared domain structure despite a lack of sequence conservation, as well as N-terminal and C-terminal disordered regions.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210, United States.
Native Mass Spectrometry (nMS) is a versatile technique for elucidating protein structure. Surface-Induced Dissociation (SID) is an activation method in tandem MS predominantly employed for determining protein complex stoichiometry alongside information about interface strengths. SID-nMS data can be collected over a range of acceleration energies, yielding Energy Resolved Mass Spectrometry (ERMS) data.
View Article and Find Full Text PDFBiochem J
January 2025
School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
The sulfosugar sulfoquinovose (SQ) is catabolized through the sulfoglycolytic Entner-Doudoroff pathway, beginning with the oxidation of SQ to sulfogluconolactone by SQ dehydrogenase. We present a comprehensive structural and kinetic characterization of Pseudomonas putida SQ dehydrogenase (PpSQDH). PpSQDH is a tetrameric enzyme belonging to the short-chain dehydrogenase/reductase (SDR) superfamily with a strong preference for NAD+ over NADP+.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!