Covalent surface attachment of carbohydrate moieties using maleimide-sulfhydril reaction was characterized by surface-selective vibrational sum-frequency generation (VSFG) spectroscopy. The comparative VSFG spectra of the precursor maleimide-terminated SAM and the product glucose adlayer reveal the high efficiency of the surface coupling reaction (>90%) and the details of the molecular organization of the formed carbohydrate adlayer. The glucose groups are orientationally well ordered, as judged by their sharp C-H stretch bands. The chemical structure of the linker can significantly affect the orientation of the carbohydrate moiety at the surface. Two alkanethiol linkers of different chain lengths (11 and 16 carbons) yield similar orientations of the glucose in the adlayer whereas the cysteine-containing linker produces markedly different relative peak intensities of the glucose C-H stretch bands in the VSFG spectra, suggesting a significantly different orientation with respect to the surface plane.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la803113h | DOI Listing |
Sensors (Basel)
December 2024
TDA Research Inc., Golden, CO 80403, USA.
Here we describe the synthesis and evaluation of a molecular corrosion sensor that can be applied in situ in aerospace coatings, then used to detect corrosion after the coating has been applied. A pH-sensitive molecule, 4-mercaptopyridin (4-MP), is attached to a gold nanoparticle to allow surface-enhanced Raman-scattering (SERS) for signal amplification. These SERS nanoparticles, when combined with an appropriate micron-sized carrier system, are incorporated directly into an MIL-SPEC coating and used to monitor the process onset and progression of corrosion using pH changes occurring at the metal-coating interface.
View Article and Find Full Text PDFFoods
December 2024
Instituto de Ciencia y Tecnología de los Alimentos Córdoba (ICYTAC-CONICET), Universidad Nacional de Córdoba, Av. Filloy S/N, Ciudad Universitaria, Córdoba CP 5000, Argentina.
The morphology of wheat starch granules with different damaged starch (DS) content was analyzed using a particle size analyzer and scanning electron microscopy (SEM); the granular structure was studied using FT-IR spectroscopy and X-ray diffraction (XRD); and the granule-water interaction was evaluated by thermogravimetric analysis (TGA) and dynamic vapor sorption (DVS). The increase in the level of DS shifted the population of B-type granules towards larger particle diameters and shifted the population of A-type granules towards smaller particle diameters. The appearance of the surface of the starch-damaged granules was rough and flaky (SEM images).
View Article and Find Full Text PDFMaterials (Basel)
December 2024
State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China.
The development of efficient catalysts for water electrolysis is crucial for advancing the low-carbon transition and addressing the energy crisis. This work involves the fabrication of graphene-based catalysts for the oxygen evolution reaction (OER) by integrating NiFe-LDH and PbO onto graphene using plasma treatment. The plasma process takes only 30 min.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Institute of Chemistry, Federal University of Uberlândia, Uberlândia 38400-902, Brazil.
Cellulose tosylate (MCC-Tos) is a key derivative for surface modification and a crucial precursor for cellulose compatibilization in click reactions, enabling its functionalization for advanced applications. Replacing tosyl groups with alkyne groups broadens cellulose's potential in biocompatible reactions, such as thiol-yne click chemistry and protein/enzyme immobilization. To achieve this, we optimized the heterogeneous synthesis of MCC-Tos using a Doehlert matrix statistical design, evaluating the influence and interaction of the reaction conditions.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Faculty of Pharmacy, Vasile Goldis Western University of Arad, 310130 Arad, Romania.
Polyethylene terephthalate (PET) is a widely utilized synthetic polymer, favored in various applications for its desirable physicochemical characteristics and widespread accessibility. However, its extensive utilization, coupled with improper waste disposal, has led to the alarming pollution of the environment. Thus, recycling PET products is essential for diminishing global pollution and turning waste into meaningful materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!