A combined biological (augmented membrane bioreactor (MBR)) and photochemical (photocatalysis and ozonation) treatment has been proposed for bromoamine acid (BAA) removal in dyeing wastewater. It was demonstrated that the color and chemical oxygen demand removal in the sequential augmented MBR was about 90% and 50%, respectively. By ribosomal intergenic spacer analysis, it was found that the introduced strain QYY was maintained as the predominant species and the diversity of the system was relatively low throughout the operation. Photocatalysis and ozonation processes were efficient to treat the effluents from MBR with high color and total organic carbon removal more than 90% within 120 min. Therefore, the hybrid treatment system is a possible way to achieve the complete mineralization of BAA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12010-008-8501-z | DOI Listing |
Bioresour Technol
August 2019
State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
A novel Rhodococcus pyridinivorans GF3 capable of degrading anthraquinone compounds (ACs) was isolated from 1-amino-4-bromoanthraquinone-2-sulfonic acid contaminated soil under aerobic conditions. Strain GF3 could degrade nine ACs at 150 rpm and 30 °C. LC-MS analysis showed that ACs were degraded via catechol and salicylic acid-produced pathways, which were different from previously reported phthalic acid-produced pathway.
View Article and Find Full Text PDFBeilstein J Org Chem
January 2016
PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, Pharmaceutical Sciences Bonn (PSB), University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany.
Anthraquinone (AQ) derivatives play a prominent role in medicine and also in textile industry. Bromaminic acid (1-amino-4-bromoanthraquinone-2-sulfonic acid) is an important precursor for obtaining dyes as well as biologically active compounds through the replacement of the C4-bromo substituent with different (ar)alkylamino residues. Here we report methods for the synthesis of bromaminic acid analogues bearing different substituents at the 2-position of the anthraquinone core.
View Article and Find Full Text PDFJ Environ Sci (China)
January 2015
Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
Bacterial decolorization of anthraquinone dye intermediates is a slow process under aerobic conditions. To speed up the process, in the present study, effects of various nutrients on 1-amino-4-bromoanthraquinone-2-sulfonic acid (ABAS) decolorization by Sphingomonas xenophaga QYY were investigated. The results showed that peptone, yeast extract and casamino acid amendments promoted ABAS bio-decolorization.
View Article and Find Full Text PDFBioresour Technol
March 2011
Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental and Biological Science and Technology, Dalian 116024, China.
The biodegradation of bromoamine acid (BAA) in a combined airlift loop reactor (ALR) and biological activated carbon (BAC) system was investigated. The results showed that the ALR using Sphingomonas xenophaga as inoculum and granular activated carbon (GAC) as carrier, could run steadily for over 3 months at less than 950 mg L(-1) BAA. And the efficiencies of BAA decolorization and COD removal in ALR reached about 90% and 50% within 12h, respectively.
View Article and Find Full Text PDFHuan Jing Ke Xue
October 2009
Key Laboratory of Industrial Ecology and Environmental Engineering Ministry of Education, School of Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024, China.
Combined ALR-BAC was used to treat bromoamine acid wastewater. The results showed that the ALR system could run steadily for over 1 months at the BAA concentration 650 mg x L(-1) after one-month acclimation, the decoloration rate of BAA was reached to about 90% within 12 h, and the removal rate of COD was about 50%, the precipitation performance of the suspended microorganism was good. When the influent bromoamine acid concentration was above 200 mg x L(-1), the decolorization products of BAA were easy to undergo auto-oxidation and the yellow intermediate products which were difficult to biodegrade were formed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!