Metal-insulator-gap-insulator-semiconductor structure for sensing devices.

Anal Sci

Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, Japan.

Published: January 2009

We report on the use of sensing devices that have a metal-insulator-gap-insulator-semiconductor structure. We have used capacitance-voltage measurements from a metal-insulator-gap-insulator-semiconductor sensing device to characterize different pH solutions and deoxyribonucleic acid (DNA) solutions. Hysteresis in the capacitance-voltage curves results from mobile ionic charges in the solutions and the influence of changes on the sensing surface condition. As the pH decreases in the pH range of 2.7 to 7.0, the flatband voltage shift toward the negative voltage increases. The differences in the flatband voltage shift in capacitance-voltage curves are related to the mobile ionic charge density in solutions with different pH values or DNA molecules.

Download full-text PDF

Source
http://dx.doi.org/10.2116/analsci.25.101DOI Listing

Publication Analysis

Top Keywords

metal-insulator-gap-insulator-semiconductor structure
8
sensing devices
8
capacitance-voltage curves
8
curves mobile
8
mobile ionic
8
flatband voltage
8
voltage shift
8
sensing
4
structure sensing
4
devices report
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!