A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Measuring the influence of the BKCa {beta}1 subunit on Ca2+ binding to the BKCa channel. | LitMetric

Measuring the influence of the BKCa {beta}1 subunit on Ca2+ binding to the BKCa channel.

J Gen Physiol

Molecular Cardiology Research Institute, Tufts Medical Center, Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA.

Published: February 2009

The large-conductance Ca(2+)-activated potassium (BK(Ca)) channel of smooth muscle is unusually sensitive to Ca(2+) as compared with the BK(Ca) channels of brain and skeletal muscle. This is due to the tissue-specific expression of the BK(Ca) auxiliary subunit beta1, whose presence dramatically increases both the potency and efficacy of Ca(2+) in promoting channel opening. beta1 contains no Ca(2+) binding sites of its own, and thus the mechanism by which it increases the BK(Ca) channel's Ca(2+) sensitivity has been of some interest. Previously, we demonstrated that beta1 stabilizes voltage sensor activation, such that activation occurs at more negative voltages with beta1 present. This decreases the work that Ca(2+) must do to open the channel and thereby increases the channel's apparent Ca(2+) affinity without altering the real affinities of the channel's Ca(2+) binding sites. To explain the full effect of beta1 on the channel's Ca(2+) sensitivity, however, we also proposed that there must be effects of beta1 on Ca(2+) binding. Here, to test this hypothesis, we have used high-resolution Ca(2+) dose-response curves together with binding site-specific mutations to measure the effects of beta1 on Ca(2+) binding. We find that coexpression of beta1 alters Ca(2+) binding at both of the BK(Ca) channel's two types of high-affinity Ca(2+) binding sites, primarily increasing the affinity of the RCK1 sites when the channel is open and decreasing the affinity of the Ca(2+) bowl sites when the channel is closed. Both of these modifications increase the difference in affinity between open and closed, such that Ca(2+) binding at either site has a larger effect on channel opening when beta1 is present.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2638200PMC
http://dx.doi.org/10.1085/jgp.200810129DOI Listing

Publication Analysis

Top Keywords

ca2+ binding
32
ca2+
16
beta1 ca2+
12
binding sites
12
channel's ca2+
12
binding
9
beta1
9
binding bkca
8
bkca channel
8
channel opening
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!