Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2621177 | PMC |
http://dx.doi.org/10.1534/genetics.108.099762 | DOI Listing |
Nature
January 2025
Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
The abundance and sequence of satellite DNA at and around centromeres is evolving rapidly despite the highly conserved and essential process through which the centromere directs chromosome inheritance. The impact of such rapid evolution is unclear. Here we find that sequence-dependent DNA shape dictates packaging of pericentromeric satellites in female meiosis through a conserved DNA-shape-recognizing chromatin architectural protein, high mobility group AT-hook 1 (HMGA1).
View Article and Find Full Text PDFGigascience
January 2025
Centre for Evolutionary & Organismal Biology, Zhejiang University School of Medicine, Hangzhou 310058, China.
Background: A thorough analysis of genome evolution is fundamental for biodiversity understanding. The iconic monotremes (platypus and echidna) feature extraordinary biology. However, they also exhibit rearrangements in several chromosomes, especially in the sex chromosome chain.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125.
From RNA interference to chromatin silencing, diverse genome defense pathways silence selfish genetic elements to safeguard genome integrity. Despite their diversity, different defense pathways share a modular organization, where numerous specificity factors identify diverse targets and common effectors silence them. In the PIWI-interacting RNA (piRNA) pathway, target RNAs are first identified by complementary base pairing with piRNAs and then silenced by PIWI-clade nucleases.
View Article and Find Full Text PDFPLoS Biol
January 2025
Institut de Génétique Humaine, Univ Montpellier, Centre National de la Recherche Scientifique, Montpellier, France.
In many eukaryotes, meiotic recombination occurs preferentially at discrete sites, called recombination hotspots. In various lineages, recombination hotspots are located in regions with promoter-like features and are evolutionarily stable. Conversely, in some mammals, hotspots are driven by PRDM9 that targets recombination away from promoters.
View Article and Find Full Text PDFCell Rep
December 2024
State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China; Cellular Screening Center, The University of Chicago, Chicago, IL, USA; Department of Neurology, Center for Reproductive Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. Electronic address:
In male animals, spermatogonia in testes differentiate into sperm, one of the most diverse cell types across species. Despite the evolutionary retention of key genes essential for spermatogenesis, the extent of their conservation remains unclear. To explore the genetic basis of spermatogenesis under strong selective pressure, we compare single-cell RNA sequencing (scRNA-seq) datasets from the testes of humans, mice, and fruit flies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!