A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1002
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3142
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Transmembrane form agrin-induced process formation requires lipid rafts and the activation of Fyn and MAPK. | LitMetric

Overexpression or clustering of the transmembrane form of the extracellular matrix heparan sulfate proteoglycan agrin (TM-agrin) induces the formation of highly dynamic filopodia-like processes on axons and dendrites from central and peripheral nervous system-derived neurons. Here we show that the formation of these processes is paralleled by a partitioning of TM-agrin into lipid rafts, that lipid rafts and transmembrane-agrin colocalize on the processes, that extraction of lipid rafts with methyl-beta-cyclodextrin leads to a dose-dependent reduction of process formation, that inhibition of lipid raft synthesis prevents process formation, and that the continuous presence of lipid rafts is required for the maintenance of the processes. Association of TM-agrin with lipid rafts results in the phosphorylation and activation of the Src family kinase Fyn and subsequently in the phosphorylation and activation of MAPK. Inhibition of Fyn or MAPK activation inhibits process formation. These results demonstrate that the formation of filopodia-like processes by TM-agrin is the result of the activation of a complex intracellular signaling cascade, supporting the hypothesis that TM-agrin is a receptor or coreceptor on neurons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2658064PMC
http://dx.doi.org/10.1074/jbc.M806719200DOI Listing

Publication Analysis

Top Keywords

lipid rafts
24
process formation
16
transmembrane form
8
fyn mapk
8
filopodia-like processes
8
tm-agrin lipid
8
phosphorylation activation
8
formation
7
lipid
7
rafts
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!