Sphingolipids and phosphoinositides both play signaling roles in Saccharomyces cerevisiae. Although previous data indicate independent functions for these two classes of lipids, recent genetic studies have suggested interactions between phosphatidylinositol (PtdIns) phosphate effectors and sphingolipid biosynthetic enzymes. The present study was undertaken to further define the effects of phosphatidylinositol 4-phosphate (PtdIns(4)P) metabolism on cell sphingolipid metabolism. The data presented indicate that deletion of SAC1, a gene encoding a PtdIns(4)P phosphatase, increased levels of most sphingolipid species, including sphingoid bases, sphingoid base phosphates, and phytoceramide. In contrast, sac1Delta dramatically reduced inositol phosphosphingolipids, which result from the addition of a PtdIns-derived phosphoinositol head group to ceramides through Aur1p. Deletion of SAC1 decreased PtdIns dramatically in both steady-state and pulse labeling studies, suggesting that the observed effects on sphingolipids may result from modulation of the availability of PtdIns as a substrate for Aur1p. Supporting this hypothesis, acute attenuation of PtdIns(4)P production through Stt4p immediately increased PtdIns and subsequently reduced sphingoid bases. This reduction was overcome by the inhibition of Aur1p. Moreover, modulation of sphingoid bases through perturbation of PtdIns(4)P metabolism initiated sphingolipid-dependent biological effects, supporting the biological relevance for this route of regulating sphingolipids. These findings suggest that, in addition to potential signaling effects of PtdInsP effectors on sphingolipid metabolism, PtdIns kinases may exert substantial effects on cell sphingolipid profiles at a metabolic level through modulation of PtdIns available as a substrate for complex sphingolipid synthesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2658053 | PMC |
http://dx.doi.org/10.1074/jbc.M808325200 | DOI Listing |
Previously, our metabolomic, transcriptomic, and genomic studies characterized the ceramide/sphingomyelin pathway as a therapeutic target in Alzheimer's disease, and we demonstrated that FTY720, a sphingosine-1-phospahate receptor modulator approved for treatment of multiple sclerosis, recovers synaptic plasticity and memory in APP/PS1 mice. To further investigate how FTY720 rescues the pathology, we performed metabolomic analysis in brain, plasma, and liver of trained APP/PS1 and wild-type mice. APP/PS1 mice showed area-specific brain disturbances in polyamines, phospholipids, and sphingolipids.
View Article and Find Full Text PDFRev Cardiovasc Med
January 2025
Department of Cardiology, Renmin Hospital of Wuhan University, 430060 Wuhan, Hubei, China.
Background: Ceramide, a key molecule in sphingolipid metabolism, is recognized as a standalone predictor of long-term major adverse cardiac events (MACE). We explore if integrating the global registry of acute coronary events (GRACE) score with the ceramide risk score (ceramide test 1, CERT1) improves MACE prediction in patients with acute coronary syndrome (ACS) undergoing percutaneous coronary intervention (PCI).
Methods: This cohort study included 210 participants with ACS undergoing PCI.
Comp Biochem Physiol C Toxicol Pharmacol
January 2025
Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China. Electronic address:
Microplastics (MPs) are ubiquitous environmental pollutants that have garnered significant attention due to their small particle size, resistance to degradation and large specific surface area, which makes it easy to adsorb various pollutants, particularly heavy metals. Arsenic (As), a common metal poisons, poses significant risks due to its widespread industrial use. When MPs and As co-exist in the environment, they can exert combined toxic effects on organisms, affecting various systems, including the nervous system.
View Article and Find Full Text PDFPhytomedicine
January 2025
State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; Department of Nephrology, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China. Electronic address:
Background: Huangkui capsule (HKC), a Chinese patent medicine, is clinically used for treating diabetic nephropathy. However, the core disease-specific biomarkers and targets of type 2 diabetic nephropathy (T2DN) and the therapeutic mechanism of HKC are not fully elucidated.
Purpose: This study aimed to investigate the therapeutic effects and underlying molecular mechanisms of HKC for T2DN.
Sci Total Environ
January 2025
Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy. Electronic address:
Polyethylene nanoplastics (NPs) are widely diffused in terrestrial environments, including soil ecosystems, but the stress mechanisms in plants are not well understood. This study aimed to investigate the effects of two increasing concentrations of NPs (20 and 200 mg kg of soil) in lettuce. To this aim, high-throughput hyperspectral imaging was combined with metabolomics, covering both primary (using NMR) and secondary metabolism (using LC-HRMS), along with lipidomics profiling (using ion-mobility-LC-HRMS) and plant performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!