To understand the behaviour of systems containing clouds of bubbles (multibubble system) in real sonochemical reactors, a new diagnosis method, i.e., optical cavitation probe (OCP), has been proposed. When a laser beam is introduced into the cavitation bubble cloud, the scattered light intensity changes by the collective oscillation of cavitation bubbles. The frequency domain spectrum of the scattered light contains rich information on the cavitation bubble clouds, comparable with the acoustic emission spectra detected by a hydrophone. The significant merits of OCP, such as capability for spatially resolved, non-invasive measurement of the cavitation bubble clouds, robustness even in a violent cavitation field have been experimentally demonstrated.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultsonch.2008.12.003DOI Listing

Publication Analysis

Top Keywords

bubble clouds
12
cavitation bubble
12
optical cavitation
8
cavitation probe
8
scattered light
8
cavitation
6
probe light
4
light scattering
4
bubble
4
scattering bubble
4

Similar Publications

Cavitation dynamics and thermodynamic effect of R134a refrigerant in a Venturi tube.

Ultrason Sonochem

December 2024

School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China; MOE Key Laboratory of Cryogenic Technology and Equipment, Xi'an Jiaotong University, Xi'an 710049, China.

Cavitation plays a crucial role in the reliability of components in refrigeration systems. The properties of refrigerants change significantly with temperature, thereby amplifying the impact of thermodynamic effects. This study, based on the Large Eddy Simulation (LES) method and the Schnerr-Sauer (S-S) cavitation model, investigates the transient cavitating flow characteristics of the R134a refrigerant in a Venturi tube (VT).

View Article and Find Full Text PDF

Herein an extremely low (0.32‒0.25 WmK) and glassy temperature-dependence (300-600 K) of lattice thermal conductivity (κ) in a monoclinic KAgSe is reported.

View Article and Find Full Text PDF

Using space lidar to infer bubble cloud depth on a global scale.

Sci Rep

October 2024

Ocean Sciences Division, U.S. Naval Research Laboratory, NASA Stennis Space Center, John C. Stennis Space Center, MS, 39529, USA.

Visible and microwave satellite measurements can provide the global whitecap fraction. The bubble clouds are three-dimensional structures, and a space-based lidar can provide complementary observations of the bubble depth. Here, we use lidar measurements of the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite to quantify global bubble depth from the depolarization.

View Article and Find Full Text PDF

Objective: Low-intensity histotripsy (LIH) is a novel and safe technique for tissue ablation. This study aimed to explore the effects of LIH on canine prostate tissue and identify the degree of acute injury to the gland.

Methods: We constructed and evaluated two types of acoustically responsive droplet (ARD) emulsions using either perfluoropentane (PFP) with a lipid shell or perfluoromethyl-cyclopentane (PFMCP) with lauromacrogol (L) injection.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most common and malignant type of primary brain tumor. Even after surgery and chemoradiotherapy, residual GBM cells can infiltrate the healthy brain parenchyma to form secondary tumors. To mitigate GBM recurrence, we recently developed an injectable hydrogel that can be crosslinked in the resection cavity to attract, collect, and ablate residual GBM cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!