Background: Oxaliplatin is a platinum-based chemotherapeutic drug. Neurotoxicity is the dose-limiting side effect. Previous investigations have reported that acute neurotoxicity could be mediated via voltage-gated ion channels. A possible mechanism for some of the effects is a modification of surface charges around the ion channel, either because of chelation of extracellular Ca2+, or because of binding of a charged biotransformation product of oxaliplatin to the channel. To elucidate the molecular mechanism, we investigated the effects of oxaliplatin and its chloride complex [Pt(dach)oxCl](-) on the voltage-gated Shaker K channel expressed in Xenopus oocytes. The recordings were made with the two-electrode and the cut-open oocyte voltage clamp techniques.
Conclusion: To our surprise, we did not see any effects on the current amplitudes, on the current time courses, or on the voltage dependence of the Shaker wild-type channel. Oxaliplatin is expected to bind to cysteines. Therefore, we explored if there could be a specific effect on single (E418C) and double-cysteine (R362C/F416C) mutated Shaker channels previously shown to be sensitive to cysteine-specific reagents. Neither of these channels were affected by oxaliplatin. The clear lack of effect on the Shaker K channel suggests that oxaliplatin or its monochloro complex has no general surface-charge effect on the channels, as has been suggested before, but rather a specific effect to the channels previously shown to be affected.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2639537 | PMC |
http://dx.doi.org/10.1186/1477-5751-8-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!