The liver plays a major role in the early hypometabolic and later hypermetabolic phases after severe burn injury. Proteomic analysis was used to identify altered proteins in liver during these two phases. Sprague-Dawley rats were subjected to a full-thickness dorsal burn injury covering 40% of the total body surface area. Controls consisted of sham-treated animals. Liver tissues were collected on postburn days 1 and 7. The proteomic data show greater production of positive acute phase proteins on day 1 than on day 7. Many antioxidant enzymes were coordinately downregulated on day 1, including the potent biliverdin reductase. These antioxidants were restored and in some cases upregulated on day 7. This opposite trend in the change of antioxidant proteins corroborated our finding of more pronounced oxidative stress on day 1 than on day 7 as measured via protein carbonyl content. The changes of metabolic enzymes on days 1 and 7 were consistent with hypo- and hyper-metabolic states, respectively. Furthermore, a previously unreported decrease in ornithine aminotransferase on day 7 may be a key contributor to the observed increased urinary urea excretion during the hypermetabolic phase. Overall, the many differences in protein expression observed on postburn days 1 and 7 reflect the dissimilar hepatic metabolic patterns during the acute and flow phases following burn injury.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pmic.200700427DOI Listing

Publication Analysis

Top Keywords

burn injury
12
dissimilar hepatic
8
protein expression
8
acute flow
8
flow phases
8
postburn days
8
day day
8
day
7
hepatic protein
4
expression profiles
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!