Formulation of frequency stability limited by laser intrinsic noise in feedback systems.

Appl Opt

Earthquake Research Institute, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.

Published: January 2009

We investigated the influence of amplitude modulation (AM) noise and phase modulation (PM) noise of a laser source on the frequency stability in frequency stabilization systems. We estimated the frequency stability and evaluated the efficacy of a noise reduction technique (the Doppler-trend subtraction method) of a laser diode frequency stabilization system, where enhanced intensity noise arising from PM-to-AM noise conversion through a reference gas cell is reduced using the technique employed in modulation transfer spectroscopy. To evaluate the relationship between the laser's intrinsic noise and its frequency stability, we performed noise spectrum measurements and formulated frequency stability in addition to measuring Allan standard deviation. As a result, it is found that the extra noise generated in PM-to-AM conversion is efficiently removed by the Doppler-trend subtraction method and that within the feedback bandwidth, the frequency stability becomes 1 order of magnitude better than that without the method.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ao.48.000429DOI Listing

Publication Analysis

Top Keywords

frequency stability
24
noise
9
intrinsic noise
8
modulation noise
8
frequency stabilization
8
doppler-trend subtraction
8
subtraction method
8
frequency
7
stability
6
formulation frequency
4

Similar Publications

Compact high-bandwidth single-beam optically-pumped magnetometer for biomagnetic measurement.

Biomed Opt Express

January 2025

State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics, and Center for Quantum Information Technology, Peking University, Beijing 100871, China.

Optically-pumped magnetometer (OPM) has been of increasing interest for biomagnetic measurements due to its low cost and portability compared with superconducting quantum interference devices (SQUID). Miniaturized spin-exchange-relaxation-free (SERF) OPMs typically have limited bandwidth (less than a few hundred Hertz), making it difficult to measure high-frequency biomagnetic signals such as the magnetocardiography (MCG) signal of the mouse. Existing experiments mainly use SQUID systems to measure the signal.

View Article and Find Full Text PDF

We report on the first deployment of a ytterbium (Yb) transportable optical lattice clock (TOLC), commercially shipping the clock 3000 km from Boulder, Colorado, to Washington DC. The system, composed of a rigidly mounted optical reference cavity, an atomic physics package, and an optical frequency comb, fully realizes an independent frequency standard for comparisons in the optical and microwave domains. The shipped Yb TOLC was fully operational within 2 days of arrival, enabling frequency comparison with a rubidium (Rb) fountain at the United States Naval Observatory (USNO).

View Article and Find Full Text PDF

In this work, a specially designed multilayer indium tin oxide (ITO) mesh structure metasurface was proposed as a microwave absorber, achieving both excellent angle-insensitive broadband absorption and high shielding effectiveness (SE). It features gradually changing surface resistance ( ), to expand the absorption bandwidth while maintaining high SE. Also, a folded square ring metasurface was designed to effectively suppress surface wave grating lobes, as well as to reduce the unit size of the metasurface and thus the absorber.

View Article and Find Full Text PDF

Current sound-absorbing materials, reliant on nonrenewable resources, pose sustainability and disposal challenges. This study introduces a novel collagen-lignin sponge (CLS), a renewable biomass-based material that combines collagen's acoustic properties with lignin's structural benefits. CLSs demonstrate high porosity (>0.

View Article and Find Full Text PDF

Background: Mycobacterium bovis BCG is the human tuberculosis vaccine and is the oldest vaccine still in use today with over 4 billion people vaccinated since 1921. The BCG vaccine has also been investigated experimentally in cattle and wildlife by various routes including oral and parenteral. Thus far, oral vaccination studies of cattle have involved liquid BCG or liquid BCG incorporated into a lipid matrix.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!