Background: Natural killer (NK) cells participate in pig-to-primate xenograft rejection both by antibody-dependent and -independent mechanisms. A majority of human NK cells express the inhibitory receptor CD94/NKG2A, which binds specifically to human leukocyte antigen (HLA)-E, a trimeric complex consisting of the HLA-E heavy chain, beta2-microglobulin (beta2m), and a peptide derived from the leader sequence of some major histocompatibility complex class I molecules.
Methods: To use this mechanism for protection of pig tissues against human NK cell-mediated cytotoxicity, we generated transgenic pigs by pronuclear microinjection of genomic fragments of HLA-E with an HLA-B7 signal sequence and of human beta2-microglobulin (hubeta2m) into zygotes.
Results: Three transgenic founder pigs were generated. Northern blot analysis of RNA from peripheral blood mononuclear cells revealed the presence of the expected transcript sizes for both transgenes in two of the three founders. The founder with the highest expression and his offspring were characterized in detail. Fluorescence-activated cell sorting (FACS) and Western blot analyses demonstrated consistent expression of HLA-E and hubeta2m in peripheral blood mononuclear cells. Immunohistochemistry revealed the presence of HLA-E and hubeta2m on endothelial cells of many organs, including heart and kidney. In vitro studies showed that lymphoblasts and endothelial cells derived from HLA-E/hubeta2m transgenic pigs are effectively protected against human NK cell-mediated cytotoxicity, depending on the level of CD94/NKG2A expression on the NK cells. Further, HLA-E/hubeta2m expression on porcine endothelial cells inhibited the secretion of interferon (IFN)-gamma by co-cultured human NK cells.
Conclusions: This novel approach against cell-mediated xenogeneic responses has important implications for the generation of multitransgenic pigs as organ donors for clinical xenotransplantation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/TP.0b013e318191c784 | DOI Listing |
Life Sci
December 2024
State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China. Electronic address:
Aims: This study aimed to explore the molecular pathological mechanisms of the liver in metabolic disease-susceptible transgenic pigs via multiomics analysis.
Materials And Methods: The triple-transgenic (PNPLA3-GIPR-hIAPP) pig model (TG pig) was successfully constructed in our laboratory via the CRISPR/Cas9 technique previously described. Wild-type (WT) pigs and TG pigs after 2 or 12 months of high-fat and high-sucrose diet (HFHSD) induction (WT2, TG2, WT12, and TG12 groups, respectively) were used as materials.
Transpl Int
December 2024
Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.
Xenotransplantation of porcine organs has made remarkable progress towards clinical application. A key factor has been the generation of genetically multi-modified source pigs for xenotransplants, protected against immune rejection and coagulation dysregulation. While efficient gene editing tools and multi-cistronic expression cassettes facilitate sophisticated and complex genetic modifications with multiple gene knockouts and protective transgenes, an increasing number of independently segregating genetic units complicates the breeding of the source pigs.
View Article and Find Full Text PDFActa Biomater
December 2024
Department of Internal Medicine, Section of Cardiovascular Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, 300 George Street, New Haven, CT 06511, USA; Yale Stem Cell Center, 10 Amistad Street, New Haven, CT 06511, USA; Department of Pathology, Yale University, New Haven, CT 06510, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06519, USA. Electronic address:
Induced pluripotent stem cells (iPSCs) hold great promise for the treatment of cardiovascular diseases through cell-based therapies, but these therapies require extensive preclinical testing that is best done in species-in-species experiments. Pigs are a good large animal model for these tests due to the similarity of their cardiovascular system to humans. However, a lack of adequate pig iPSCs (piPSCs) that are analogous to human iPSCs has greatly limited the potential usefulness of this model system.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), The Netherlands.
J Lipid Res
December 2024
Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, China; State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, China. Electronic address:
Adipose tissue, an important organ involved in energy metabolism and endocrine, is closely related to animal meat quality and human health. Transient receptor potential channel 1 (TRPC1), an ion transporter, is adipocytes' major Ca entry channel. However, its function in fat deposition is poorly understood, particularly in pigs, which are both an ideal model for human obesity research and a primary meat source for human diets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!