Objective: Nicotinamide adenine dinucleotides (NAD+ and NADH) play a crucial role in cellular energy metabolism, and a dysregulated NAD+-to-NADH ratio is implicated in metabolic syndrome. However, it is still unknown whether a modulating intracellular NAD+-to-NADH ratio is beneficial in treating metabolic syndrome. We tried to determine whether pharmacological stimulation of NADH oxidation provides therapeutic effects in rodent models of metabolic syndrome.
Research Design And Methods: We used beta-lapachone (betaL), a natural substrate of NADH:quinone oxidoreductase 1 (NQO1), to stimulate NADH oxidation. The betaL-induced pharmacological effect on cellular energy metabolism was evaluated in cells derived from NQO1-deficient mice. In vivo therapeutic effects of betaL on metabolic syndrome were examined in diet-induced obesity (DIO) and ob/ob mice.
Results: NQO1-dependent NADH oxidation by betaL strongly provoked mitochondrial fatty acid oxidation in vitro and in vivo. These effects were accompanied by activation of AMP-activated protein kinase and carnitine palmitoyltransferase and suppression of acetyl-coenzyme A (CoA) carboxylase activity. Consistently, systemic betaL administration in rodent models of metabolic syndrome dramatically ameliorated their key symptoms such as increased adiposity, glucose intolerance, dyslipidemia, and fatty liver. The treated mice also showed higher expressions of the genes related to mitochondrial energy metabolism (PPARgamma coactivator-1alpha, nuclear respiratory factor-1) and caloric restriction (Sirt1) consistent with the increased mitochondrial biogenesis and energy expenditure.
Conclusions: Pharmacological activation of NADH oxidation by NQO1 resolves obesity and related phenotypes in mice, opening the possibility that it may provide the basis for a new therapy for the treatment of metabolic syndrome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2661596 | PMC |
http://dx.doi.org/10.2337/db08-1183 | DOI Listing |
Environ Pollut
December 2024
Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria; Exposome Austria, Research Infrastructure and National EIRENE Hub, Austria.
PER: and polyfluoroalkyl substances (PFAS) are a large group of synthetic organic chemicals that are ubiquitous environmental pollutants. Among PFAS, perfluorodecanoic acid (PFDA) is one of the most toxic compounds, but the molecular basis behind its toxicity is not fully understood. In an interspecies comparison with placental cells (HTR-8/SVneo) and zebrafish embryos, we demonstrate that PFDA induces mitochondrial dysfunction and impairs fatty acid β-oxidation.
View Article and Find Full Text PDFTalanta
December 2024
Department of Chemistry, University of Texas at San Antonio, TX, 78249, USA. Electronic address:
Aminated carbon nanotubes, CNT, were covalently modified with glutardialdehyde (GDI) and the redox dye Azure to form a new electrode material CNT-GDI-Azure (CGA). The nanocomposite of CGA and polysaccharide chitosan was used for the anodic determination of NADH. Compared to conventional carbon and metal electrodes, the CGA electrode drastically lowered the overpotential for NADH oxidation (by > 0.
View Article and Find Full Text PDFProtein Sci
January 2025
Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy.
Human succinic semialdehyde dehydrogenase is a mitochondrial enzyme fundamental in the neurotransmitter γ-aminobutyric acid catabolism. It catalyzes the NAD-dependent oxidative degradation of its derivative, succinic semialdehyde, to succinic acid. Mutations in its gene lead to an inherited neurometabolic rare disease, succinic semialdehyde dehydrogenase deficiency, characterized by mental and developmental delay.
View Article and Find Full Text PDFAging Cell
December 2024
Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
Aging is accompanied by multiple molecular changes that contribute to aging associated pathologies, such as accumulation of cellular damage and mitochondrial dysfunction. Tissue metabolism can also change with age, in part, because mitochondria are central to cellular metabolism. Moreover, the cofactor NAD, which is reported to decline across multiple tissues during aging, plays a central role in metabolic pathways such as glycolysis, the tricarboxylic acid cycle, and the oxidative synthesis of nucleotides, amino acids, and lipids.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Center for Genomics and Precision Medicine, Institute of Bioscience and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA.
Our group has synthesized a pleiotropic synthetic nanozyme redox mediator we term a "pleozyme" that displays multiple enzymatic characteristics, including acting as a superoxide dismutase mimetic, oxidizing NADH to NAD, and oxidizing HS to polysulfides and thiosulfate. Benefits have been seen in acute and chronic neurological disease models. The molecule is sourced from coconut-derived activated charcoal that has undergone harsh oxidization with fuming nitric acid, which alters the structure and chemical characteristics, yielding 3-8 nm discs with broad redox potential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!