20-Hydroxyeicosatetraenoic acid (20-HETE) is an endogenous cytochrome P-450 product present in vascular smooth muscle and uniquely located in the vascular endothelium of pulmonary arteries (PAs). 20-HETE enhances reactive oxygen species (ROS) production of bovine PA endothelial cells (BPAECs) in an NADPH oxidase-dependent manner and is postulated to promote angiogenesis via activation of this pathway in systemic vascular beds. We tested the capacity of 20-HETE or a stable analog of this compound, 20-hydroxy-eicosa-5(Z),14(Z)-dienoic acid, to enhance survival and protect against apoptosis in BPAECs stressed with serum starvation. 20-HETE produced a concentration-dependent increase in numbers of starved BPAECs and increased 5-bromo-2'-deoxyuridine incorporation. Caspase-3 activity, nuclear fragmentation studies, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays supported protection from apoptosis and enhanced survival of starved BPAECs treated with a single application of 20-HETE. Protection from apoptosis depended on intact NADPH oxidase, phosphatidylinositol 3 (PI3)-kinase, and ROS production. 20-HETE-stimulated ROS generation by BPAECs was blocked by inhibition of PI3-kinase or Akt activity. These data suggest 20-HETE-associated protection from apoptosis in BPAECs required activation of PI3-kinase and Akt and generation of ROS. 20-HETE also protected against apoptosis in BPAECs stressed by lipopolysaccharide, and in mouse PAs exposed to hypoxia reoxygenation ex vivo. In summary, 20-HETE may afford a survival advantage to BPAECs through activation of prosurvival PI3-kinase and Akt pathways, NADPH oxidase activation, and NADPH oxidase-derived superoxide.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2660237 | PMC |
http://dx.doi.org/10.1152/ajpheart.01087.2008 | DOI Listing |
J Pharmacol Exp Ther
January 2024
Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
The primary response of proliferating bovine pulmonary artery endothelial cells (BPAECs) after X-ray irradiation [≤10 gray (Gy)] is shown to be transient cell-cycle arrest. Accompanying oxidant-linked functional changes within the mitochondria are readily measured, but increased autophagy is not. Radiation-induced apoptosis is negligible in this line-important because cells undergoing apoptosis release oxygen-derived species that can overwhelm/mask the radiation-associated species and their effects that we wish to investigate.
View Article and Find Full Text PDFSci Rep
October 2020
School of Veterinary Medicine, University of Surrey, Guildford, Surrey, UK.
Redox Biol
May 2013
Cardiovascular Division, British Heart Foundation Centre of Research Excellence, School of Medicine, King's College London, 150 Stamford Street, London SE1 9NH, U.K.
4-hydroxynonenal (HNE) is a lipid hydroperoxide end product formed from the oxidation of n-6 polyunsaturated fatty acids. The relative abundance of HNE within the vasculature is dependent not only on the rate of lipid peroxidation and HNE synthesis but also on the removal of HNE adducts by phase II metabolic pathways such as glutathione-S-transferases. Depending on its relative concentration, HNE can induce a range of hormetic effects in vascular endothelial and smooth muscle cells, including kinase activation, proliferation, induction of phase II enzymes and in high doses inactivation of enzymatic processes and apoptosis.
View Article and Find Full Text PDFRadiat Res
December 2010
Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15219-3138, USA.
Bovine pulmonary artery endothelial cells (BPAEC) are extremely sensitive to oxygen, mediated by superoxide production. Ionizing radiation is known to generate superoxide in oxygenated aqueous media; however, at systemic oxygen levels (3%), no oxygen enhancement is observed after irradiation. A number of markers (cell growth, alamarBlue, mitochondrial membrane polarization) for metabolic activity indicate that BPAEC maintained under 20% oxygen grow and metabolize more slowly than cells maintained under 3% oxygen.
View Article and Find Full Text PDFEur J Pharmacol
August 2009
Department of Anesthesiology, University of Virginia, Charlottesville 22908-0710, USA.
Application of volatile anesthetics during the onset of reperfusion reduced ischemia-induced cardiac and brain injury (anesthetic postconditioning). This study was designed to evaluate whether volatile anesthetics induced a postconditioning effect in endothelial cells. Bovine pulmonary arterial endothelial cell (BPAEC) cultures were exposed to oxygen-glucose deprivation, a condition to simulate ischemia in vitro, for 3 h.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!