Trypanosoma cruzi bromodomain factor 2 (BDF2) binds to acetylated histones and is accumulated after UV irradiation.

Int J Parasitol

Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 351, 2000, Rosario, Argentina.

Published: May 2009

Histone tail post-translational modifications (acetylation, methylation, phosphorylation, ubiquitination and ADP-ribosylation) regulate many cellular processes. Among these modifications, phosphorylation, methylation and acetylation have already been described in trypanosomatid histones. Bromodomains, together with chromodomains and histone-binding SANT domains, were proposed to be responsible for "histone code" reading. The Trypanosoma cruzi genome encodes four coding sequences (CDSs) that contain a bromodomain, named TcBDF1-4. Here we show that one of those, TcBDF2, is expressed in discrete regions inside the nucleus of all the parasite life cycle stages and binds H4 and H2A purified histones from T. cruzi. Immunolocalization experiments using both anti-histone H4 acetylated peptides and anti-TcBDF2 antibodies determined that TcBDF2 co-localizes with histone H4 acetylated at lysines K10 and K14. TcDBF2 and K10 acetylated H4 interaction was confirmed by co-immunoprecipitation. It is also shown that TcBDF2 was accumulated after UV irradiation of T. cruzi epimastigotes. These results suggest that TcBDF2 could be taking part in a chromatin remodelling complex in T. cruzi.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpara.2008.11.013DOI Listing

Publication Analysis

Top Keywords

trypanosoma cruzi
8
accumulated irradiation
8
cruzi bromodomain
4
bromodomain factor
4
factor bdf2
4
bdf2 binds
4
acetylated
4
binds acetylated
4
acetylated histones
4
histones accumulated
4

Similar Publications

Background: Determining esophageal and colon involvement in patients with Chagas disease occurs through invasive and uncomfortable examinations, which in most cases are not performed. The objective of this study was to assess the involvement of anti-M2-pyruvate kinase (M2-PK) autoantibodies in the development of digestive alterations and/or in the diagnosis of the digestive form of human Chagas disease.

Methods: The total IgG and isotype (IgG1, IgG2, IgG3, IgG4) production was quantified using the antigen of Trypanosoma cruzi and the human M2-PK recombinant protein via the ELISA technique.

View Article and Find Full Text PDF

Background: Trypanosoma cruzi is a protozoan parasite which causes Chagas disease. Mother-to-child transmission is the main route of transmission in vector-free areas. Congenital Chagas disease refers specifically to cases arising from this route of transmission.

View Article and Find Full Text PDF

Expression Analysis of Thirteen Genes in Response to Nifurtimox and Benznidazole in Mexican Isolates of Trypanosoma cruzi by Digital PCR.

Acta Parasitol

January 2025

Edificio D, Facultad de Ciencias Químicas, LADISER Inmunología y Biología Molecular, Universidad Veracruzana, Orizaba, Veracruz, México.

Despite being the most relevant and critical option for managing Chagas disease, pharmacological therapy is currently limited by the availability of only two drugs, benznidazole and nifurtimox. Their effectiveness is further restricted in the chronic phase of the infection, as they induce severe side effects and require prolonged treatment. Additionally, the use of these drugs can lead to the emergence of substantial resistance problems, compounded by the potential natural resistance of some parasite isolates.

View Article and Find Full Text PDF

Chagas disease is a neglected tropical disease caused by Trypanosoma cruzi with clinical presentations ranging from asymptomatic to cardiac and/or gastrointestinal complications. The mechanisms of pathogenesis are still poorly understood, but T. cruzi strain diversity may be associated with disease progression.

View Article and Find Full Text PDF

Infectious disease treatment success requires symptom resolution (clinical treatment success), which often but not always involves pathogen clearance. Both of these treatment goals face disease-specific and general challenges. In this review, we summarize the current state of knowledge in mechanisms of clinical and parasitological treatment failure in the context of Chagas disease, a neglected tropical disease causing cardiac and gastrointestinal symptoms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!