Acceleration effect of sulfate ion on the dissolution of amorphous silica.

J Colloid Interface Sci

Department of Chemistry, Faculty of Science, Kyushu University, Ropponmatsu, Chuo-ku, Fukuoka 810-8560, Japan.

Published: March 2009

The dissolution rate of amorphous silica is enhanced by sulfate ions. The zeta potential for silica particles in Na(2)SO(4) solution was lower than that in NaCl solution with the same ionic strength. These facts indicate that the specific adsorption of sulfate ions occurred by overcoming repulsion between negative charges of the SO(4)(2-) ion and SiO(-) on the surface of silica. The dissolution rate of amorphous silica may be accelerated by the specific adsorption of SO(4)(2-) ions because of a decrease in the strength of the [triple bond]Si-O-Si[triple bond] bond in amorphous silica due to donation of electron density from the adsorbed SO(4)(2-) ions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2008.11.076DOI Listing

Publication Analysis

Top Keywords

amorphous silica
16
silica dissolution
8
dissolution rate
8
rate amorphous
8
sulfate ions
8
specific adsorption
8
so42- ions
8
silica
6
acceleration sulfate
4
sulfate ion
4

Similar Publications

Glassy Dynamics and Local Crystalline Order in Two-Dimensional Amorphous Silica.

J Phys Chem B

January 2025

Dipartimento di Fisica, Università di Trieste, Strada Costiera 11, 34151 Trieste, Italy.

We reassess the modeling of amorphous silica bilayers as a 2D classical system whose particles interact with an effective pairwise potential. We show that it is possible to reparametrize the potential developed by Roy, Heyde, and Heuer to quantitatively match the structural details of the experimental samples. We then study the glassy dynamics of the reparametrized model at low temperatures.

View Article and Find Full Text PDF

This study aimed to test the use of Rietveld refinement on respirable aerosol samples to determine the phase of respirable crystalline silica (RCS) and other minerals. The results from the Rietveld refinement were compared to an external standard method and gravimetrical measurements. Laboratory samples consisting of α-quartz, feldspar, and calcite with variable proportions and total mass loadings were made and analyzed using the NIOSH 7500 , followed by Rietveld refinement.

View Article and Find Full Text PDF
Article Synopsis
  • The discharge of calved ice and subglacial runoff in Disko Bay, home to Sermeq Kujalleq glacier, is expected to influence marine biogeochemistry, particularly affecting the marine silica cycle due to elevated dissolved silica (dSi) from glaciers.
  • The study analyzes silica dynamics in various regions around Disko Bay, finding that land-terminating glaciers show conservative dSi patterns, whereas marine-terminating glaciers significantly alter nutrient distribution through subglacial discharge plumes.
  • The research quantifies contributions to dSi enrichment, highlighting that a large fraction comes from saline water entrainment, with minor contributions from icebergs and amorphous silica dissolution, ultimately adding a small but significant dSi flux to the environment.
View Article and Find Full Text PDF

The search for alternative material sources to conventional ones has had a significant impact on the construction sector today, driven by the implementation of sustainable development policies on a global scale. Alternative cementitious materials, such as agricultural industry by-products, have been introduced to ensure the efficient use of renewable natural resources while promoting a balance between the technical and economic aspects of infrastructure projects. This article provides an overview of research conducted on the use of pozzolans derived from agro-industrial by-products, such as rice husk ash (RHA), palm oil fuel ash (POFA), and sugarcane bagasse ash (SCBA), which have a high content of amorphous silica.

View Article and Find Full Text PDF

Nanoscale Fourier transform infrared (Nano-FTIR) imaging and spectroscopy correlated with photoluminescence measurements of lunar Apollo samples with different surface radiation exposure histories reveal distinct physical and chemical differences associated with space weathering effects. Analysis of two sample fragments: an ilmenite basalt (12016) and an impact melt breccia (15445) show evidence of intrinsic or delivered Nd and an amorphous silica glass component on exterior surfaces, whereas intrinsic Cr and/or trapped electron states are limited to interior surfaces. Spatially localized 1050 cm/935 cm band ratios in Nano-FTIR hyperspectral maps may further reflect impact-induced shock nanostructures, while shifts in silicate band positions indicate accumulated radiation damage at the nanoscale from prolonged space weathering due to micrometeorites, solar wind, energetic x-rays and cosmic ray bombardment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!