Using intracranial electrocorticography, we determined how cortical gamma-oscillations (50-150 Hz) were induced by different visual tasks in nine children with focal epilepsy. In all children, full-field stroboscopic flash-stimuli induced gamma-augmentation in the anterior-medial occipital cortex (starting on average at 31 ms after stimulus presentation) and subsequently in the lateral-polar occipital cortex; minimal gamma-augmentation was noted in the inferior occipital-temporal cortex; occipital gamma-augmentation was followed by gamma-attenuation in three children. Central-field picture-stimuli induced sustained gamma-augmentation in the lateral-polar occipital cortex (starting on average at 69 ms) and subsequently in the inferior occipital-temporal cortex in all children and in the posterior frontal cortex in three children; the anterior-medial occipital cortex showed no gamma-augmentation but rather gamma-attenuation. Electrical stimulation of the anterior-medial occipital cortex induced a phosphene in the peripheral-field or eye deviation to the contralateral side, whereas that of the lateral-polar occipital cortex induced a phosphene in the central-field. In summary, full-field, simple and short-lasting visual information might be preferentially processed by the anterior-medial occipital cortex, and subsequently by the lateral-polar occipital cortex. Gamma-attenuation following augmentation in the striate cortex might be associated with a relative refractory-period to flash-stimuli or feed-forward inhibition by other areas. Central-field complex visual information might be processed by a network involving the lateral-polar occipital cortex and the inferior occipital-temporal cortex. A plausible interpretation of posterior frontal gamma-augmentation during central-field picture stimuli includes activation of the frontal-eye-field for visual searching. Gamma-attenuation in the anterior-medial occipital cortex during central-field picture-stimuli might be associated with relative inattention to the peripheral visual field during central-field object visualization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2757123 | PMC |
http://dx.doi.org/10.1016/j.neuroimage.2008.12.003 | DOI Listing |
Clin Radiol
December 2024
Department of Neurology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China. Electronic address:
Aim: To provide a theoretical basis for the study of the pathogenesis of residual dizziness (RD) from the perspective of imaging.
Materials And Methods: The general clinical data of the RD group and healthy control (HC) group were statistically analysed by two independent sample t tests, rank sum tests or chi-square tests. The imaging data of the two groups of people were preprocessed and statistically analysed by using the data processing and analysis for brain imaging (DPABI) software package.
Hum Brain Mapp
February 2025
BCBL - Basque Center on Cognition Brain and Language, Donostia - San Sebastián, Spain.
Population receptive field (pRF) mapping is a quantitative functional MRI (fMRI) analysis method that links visual field positions with specific locations in the visual cortex. A common preprocessing step in pRF analyses involves projecting volumetric fMRI data onto the cortical surface, typically leading to upsampling of the data. This process may introduce biases in the resulting pRF parameters.
View Article and Find Full Text PDFBrain Imaging Behav
January 2025
School of Medicine, Pusan National University, Yangsan, Republic of Korea.
COVID-19 disease, caused by the SARS-CoV-2 virus, has significantly altered modern society and lifestyles. We investigated its impact on brain glucose metabolism by meta-analyzing existing studies that utilized 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) scans of the brain. We conducted a systematic search of MEDLINE and EMBASE databases from inception to August 2024 for English-language publications using the keywords "positron emission tomography", and "COVID-19".
View Article and Find Full Text PDFAnn Neurosci
January 2025
National Resource Centre for Value Education in Engineering, Indian Institute of Technology, Delhi, India.
Background: Neural activity and subjective experiences indicate that breath-awareness practices, which focus on mindful observation of breath, promote tranquil calm and thoughtless awareness.
Purpose: This study explores the impact of tristage Ānāpānasati-based breath meditation on electroencephalography (EEG) oscillations and self-reported mindfulness states in novice meditators following a period of effortful cognition.
Methods: Eighty-nine novice meditators (82 males; Mean Age = 24.
Sports Med Open
January 2025
Department of Physical Education, Tongji University, Shanghai, 200000, China.
Background: While the effects of sleep deprivation on cognitive function are well-documented, its impact on high-intensity endurance performance and underlying neural mechanisms remains underexplored, especially in the context of search and rescue operations where both physical and mental performance are essential. This study examines the neurophysiological basis of sleep deprivation on high-intensity endurance using electroencephalography (EEG). In this crossover study, twenty firefighters were subjected to both sleep deprivation (SD) and normal sleep conditions, with each participant performing endurance treadmill exercise the following morning after each condition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!