Temperature dysfunction, clinically described as hot flashes/flushes and night sweats, commonly occur in women transitioning through menopause. Research in this field has yet to fully elucidate the biological underpinnings explaining this dysfunction. The need to develop animal models that can be used to study hormone-dependent temperature regulation is essential to advancing this scientific area. Development of telemetric transmitters for monitoring tail-skin (TST) and core body (CBT) temperatures for animal research has increased the accuracy of data by reducing extraneous factors associated with previous methods. However, until recently, TST and CBT could not be simultaneously measured telemetrically within the same animal. In this report, new dual temperature monitoring transmitters were validated by simultaneously evaluating them with the single measurement transmitters using the ovariectomized (OVX) rat thermoregulatory dysfunction model. A major advantage of measuring TST and CBT in the same animal is the ability to relate temporal changes on these two temperature parameters. Comparative experimentation was performed by single administration of clonidine (alpha(2) adrenergic agonist), MDL-100907 (5-HT(2a) antagonist), or a 7-day treatment of 17alpha-ethinyl estradiol (EE). Clonidine caused decreases in TST and CBT, MDL-100907 caused increases in TST while decreasing CBT, and EE caused decreases in TST with minor CBT decreases only at the higher dose. Data from either probe type showed similar results on temperature parameters regardless of transmitter used. These findings support the use of the new dual temperature transmitters and should enhance the quality and interpretation of data being generated in thermoregulation studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jneumeth.2008.12.013 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!